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Resumen 

El presente proyecto pretende desarrollar una infraestructura de razonamiento distribuido para 

sistemas multiagente. En especial, el proyecto se ha centrado en el diagnóstico de fallos en 

redes de telecomunicación. Dada la incertidumbre durante el diagnóstico y en la distribución de 

los datos, en este proyecto se ha continuado un proyecto anterior que proponía el uso de redes 

bayesianas para gestionar dicha incertidumbre. 

En este proyecto, abordamos una de sus limitaciones: la incapacidad de gestionar una única red 

bayesiana en redes de grandes dimensiones. Con este fin, se ha trabajado en el estudio de Redes 

Bayesianas Multiseccionadas, que facilitan la distribución de una red bayesiana en diversos 

nodos. 

El proyecto ha propuesto un mecanismo de comunicación entre los nodos para mantener su 

coherencia, que ha sido implementado mediante un middleware de multicasting JGroups. Con el 

fin de validar este modelo, se ha desarrollado la aplicación al diagnóstico en un escenario FFTH, 

integrando el sistema de razonamiento en una plataforma multiagente que se despliega sobre 

un escenario FTTH simulado. 
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Abstract 

This project aims to provide an infrastructure for distributed reasoning over multiagent systems. 

In particular, the project has focused on fault diagnosis in telecommunication networks. Given 

the uncertainty over diagnosis and the distribution of data, this project has continued an earlier 

project, which proposed the use of Bayesian networks to manage uncertainty. 

In this project, we deal with one of its limitations: the inability to manage a single Bayesian 

network in large communication networks. For this purpose, we have worked on the study of 

Multiply Sectioned Bayesian Networks, which facilitate their distribution in different nodes. 

The project has proposed a communication mechanism between the nodes to maintain 

consistency, which has been implemented using a JGroups middleware multicasting. To validate 

this model, it has been applied to diagnosis in FTTH scenario, integrating the reasoning system in 

a multi-agent platform deployed over a simulated FTTH scenario. 
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"You know, sometimes it is the artist's task to find out 

how much music you can still make with what you have left." 

Nov. 18, 1998, Itzhak Perlman, the violinist 
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I - Introduction 

In this chapter, a short introduction to this project is given. 

First, we show the motivation to the development of this project and why this project is 

interesting for the field of communications. 

Second, a summary of the developed solution is given to ease the reading and understanding 

work. 

Finally, we show a short description of the structure followed in this report, to facilitate the 

reading of this document. 

  



Introduction 

2 

 

 

I - 1. Project motivation 

Communication networks are growing more and more in the recently times. Thus, the difficulty 

of knowing the entire global network state and different states of each of its elements has 

increased exponentially. Therefore, the diagnosis of a fault in one of these networks is often a 

process characterized by high complexity and frequently requires the performance of skilled 

operators. In addition, the fact that both the source and possible solution to a problem detected 

in the network, a service or a device, a large percentage of cases, is beyond the reach of those 

who detected their symptoms, the most obvious example of this is an end user who detects a 

service. 

Given the situation discussed in the previous paragraph, it becomes evident the usefulness of a 

tool for network self-management and service. This tool detects and resolves problems 

automatically without requiring any user intervention or operator. Still, clearly the complexity of 

the system will try to simulate an experienced operator is not trivial. 

A management tool needs to perform different processes, which could be considered 

independent, although involving the same aim. In simple terms, these processes are analyzing 

the state of the network and its elements in each moment, if given any sign of failure or 

problem, it would happen to the diagnosis and, finally, solving the problem for system, network 

or device to return to a state of normalcy and proper functionality whenever possible. 

The ideas exposed above, the purpose of this final project is the development of a distributed 

diagnostic system using MSBNs to reach a list of likely causes of failure. This idea can translate 

this idea into three simple ideas: 

 Development of a MSBN based distributed system that allows distributed reasoning 

 Exposing how the use of MSBNs allows drawing conclusions at all times during handling 

the uncertainty inherent in a diagnostic process. 

 Development of a distributed system for diagnosis without overloading the network 

hotspots and thus have greater scope in obtaining the causes of failure in FTTH 

networks. 

Potential applications include decision support to cooperative human users in uncertain domains 

and troubleshooting a complex system by multiple knowledge based subsystems. 

 

I - 2. Summary of proposed solution 

Starting from a centralized MSBN architecture, we develop two architectures that allow 

distributed reasoning by mean of synchronous and iterative methods respectively. The starting 

architecture was designed to use shared objects between its nodes. This way, its distribution 

across a network was not allowed. 
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We have developed other architectures to enable the compilation and inference by message 

passing. For this purpose, our system uses an interface that can be easily implemented 

depending on the communications platform to use. 

Inference is performed by mean of two different methods. The first, synchronous method, 

performs the updating of beliefs on the whole network at the same time. This method has big 

inconvenient when dealing with scalability and more complex networks. That is the reason why 

another improved architecture has been developed. The second architecture uses iterative 

methods that allow a more robust behavior that can adapt to circumstances and events 

occurred in FTTH networks or other conflictive environments in which this architecture could be 

used. 

Before performing inference, a compilation process is needed to be done. About this process of 

compilation, several architectural changes are proposed and introduced in the developed 

architectures. 

Thereby, the system developed can be considered to be at the forefront of the current state of 

the art in the field of distributed Bayesian networks. 

I - 3. Structure of this project report 

In this section, we will introduce the main points of this report to do easier its reading. 

First, we briefly review the reasoning and techniques currently available. Paying more attention 

to distributed techniques, as well as to the techniques that have been chosen for the 

development of this project. 

Second, the analysis of the problem is done, showing the use cases, the requirements and the 

reasons why the technologies chosen have been taken. 

Third, the developed architectures are described and a detailed view of the whole process is 

shown. 

Forth, we show the test plan and the cases chosen to the verification of the developed 

architecture. 

Fifth, a description of the case study used is given, as well as a short introduction to FTTH 

Scenario. 

Finally, we expose the conclusions that result from the development of this project and the 

future work that can be done to continue the research in this field. 
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II - State of the art 

In this chapter, the more important available technologies related with this project are 

presented. Firstly, a summarized introduction to our whole work is shown. Secondly, the more 

important techniques in reasoning and distributed reasoning can be seen. Thirdly, a more 

detailed introduction to the techniques used to develop this project is presented. Finally, a short 

introduction to possible communication frameworks is shown. 

In this chapter, all these techniques are not evaluated or compared. The comparison of them and 

the conclusions extracted from all information given in this chapter are shown in the next 

chapter. 
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II - 1. Introduction 

Nowadays, many complex environments are part of the business core for a telecommunication 

operator. This is the case, for example, of network and service management. It involves different 

processes and they are performed by complex system in complex environments, understanding 

complex element like an element that: 

1. Has many number of parts 

2. Properties of these parts are distributed in a heterogeneous way 

3. These parts interact through different element in a non-trivial way 

4. These parts are adaptable 

5. These parts are evolutionary 

Many issues are presented when a system has to deal with these features. For this reason, it is 

needed a distributed reasoning technique that be able to handle uncertainty, to maintain the 

coherence during the reasoning process between distributed nodes, to be able to self-learning, 

etc. 

In this issue, we study different reasoning techniques that have already been developed. We 

compare several reasoning techniques that can be used with a distributed approach. Finally, we 

propose a distributed reasoning system using Multiply Sectioned Bayesian Network, which can 

be used and integrated in a BDI multi-agent system. 

 

II - 1.1. Distributed Reasoning 

It is very important, in distributed systems, achieve a distributed way to reason in complex 

environments and maintain coherence and consistency in the reasoning. 

There is an obvious weakness in distributed systems with central reasoning. Data from an 

isolated area is lost in the reasoning process if, for example, this area is unable to communicate 

with the central reasoning node. For example, let be a diagnosis system, there are peripheral 

sensors and central data processing nodes. If these sensors lose the connection with central 

nodes, their data could be not used in the reasoning process, thus the route cause of failure may 

be lost in the diagnosis process. 

On the other hand, if the reasoning process is distributed in the whole system, the system can 

maintain private information about critical points and share only high-level information with 

other entities. Furthermore, with a distributed reasoning approach, a lot of information can keep 

in the same node where is generated reducing the overload of the communication network[1]. 

Using the same example that is shown above, the sensors can perform local reasoning to take 

decisions about possible actions to be performed (test requesting, reconfiguration actions, etc.) 

even without external connection. Then, the system would have many distributed nodes that 

communicate between them with high-level information, i.e. with filtered and processed 

information about all peripheral elements. 
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II - 1.2. Reasoning under Uncertainty 

The greatest difference between human intelligence and the intelligence of other creatures lies 

in the fact that the former can, with the help of language, carry on knowledge accumulated over 

thousands of years. So, the uncertainties of intelligence will definitely be reflected in 

knowledge[2].  

Uncertainty is a fundamental and unavoidable feature of daily life. In order to deal with 

uncertainty intelligently, we need to be able to represent it and reason about it. Uncertainty is 

ubiquitous to knowledge fusion. Almost any source of primary data carries some degree of 

uncertainty. 

There are several mechanisms or techniques to deal with uncertainty in intelligent systems. 

Reasoning with uncertainty is a challenge that is solved using Bayes’ theory. The most important 

techniques about uncertainty treatment are studied in this project and, finally, Bayesian 

Networks are chosen to carry out this work. 

Bayesian probability is a principled formalism for representing uncertainty and drawing 

inferences in the presence of uncertainty. Bayesian methods have been widely applied in multi-

sensor data fusion systems. Bayesian networks are popular models for representing and 

reasoning about problems involving many related hypotheses.  

II - 1.3. Agent Paradigm and BDI model 

An intelligent agent (IA) is an autonomous entity, which observes and acts upon an environment 

and directs its activity towards achieving goals.  

A Belief-Desire-Intention (BDI) agent is a concrete type of intelligent agent that follows the BDI 

model. Superficially, BDI model is characterized by the implementation of an agent's beliefs, 

desires and intentions. It actually uses these concepts to solve a particular problem in agent 

programming. In essence, it provides a mechanism for separating the activity of selecting a plan 

from the execution of currently active plans. Consequently, BDI agents are able to balance the 

time spent on deliberating about plans (choosing what to do) and executing those plans (doing 

it). A BDI Agent uses its beliefs to deliberate what plans execute to achieve perform its desires. 

Although our developed MSBN framework could be used from any other program, not 

necessarily based on agents’ model, we will focus on agent paradigm to make explanations 

simpler. This way, each subnetwork, the MSBN part, will belong to the beliefs of an agent. The 

agent will update this subnetwork with all the information and beliefs it obtain. The public part 

of this subnetwork, the public beliefs, will be shared with other agents, allowing coordination 

and cooperation between agents. 

Using a distributed approach in a Multi-Agent system (MAS), each agent could represent its 

knowledge in a Bayesian subnetwork. A model to reason and work with distributed Bayesian 

networks should have the following basic capabilities as a distributed inference engine does: 

1. If an agent is isolated from the rest of the system, it can infer its local knowledge based 

in its local available information. In other words, independence, local robustness and 

local intelligence. 
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2. If none of the connections among the agents is damaged, through communication, the 

state estimations for all of the agents are consistent. In other words, coordination and 

system consistency. 

3. If some agents are missing or isolated from the rest of the system, they can reorganize 

themselves. Coordinated inferences can be initiated through the reorganized structures. 

In other words, self-organization and inference automation. 

II - 2. Reasoning Techniques 

Many reasoning techniques can be used to process information in an intelligent system. For 

example, some as rule-based systems, case based reasoning (CBR) systems, fuzzy logic systems 

or Bayesian reasoning systems. A brief description of some of these techniques is shown below. 

II - 2.1. Case-based reasoning 

Case-based reasoning (CBR), broadly construed, is the process of solving new problems based 

on the solutions of similar past problems. This reasoning technique find similar cases in a 

predetermined past case base according to current inputs or observations. Each case typically 

contains one scenario of a system. CBR has been formalized for purposes of computer reasoning 

as a process with the following steps[3], [4]:  

- Retrieve the most similar cases, which match the current system observations the most. 

In this step, if several cases are chosen, logics/rules of combining them are required. 

- Use the resulting case to try to solve the current problem. 

- If some conflicts appear, revise and adapt the resulting case to a new case according to 

current system observations. 

- Add this new case into the case base as a way of self-extension and learning. 

In other words, given a target problem, retrieve cases from memory those are relevant to 

solving it. Map the solution from the previous case to the target problem. Having mapped the 

previous solution to the target situation, test the new solution in the system and, if necessary, 

revise. Then, after the solution has been successfully adapted to the target problem, store the 

resulting experience as a new case in memory. We can see it clearly in the following scheme: 
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CBR works perfectly if the current situation matches one of the stored cases exactly. However, 

enumerating and storing all possible cases for a complex system is not practical and if the case 

base were too big, the retrieving process for a similar case would be very slow. Since a case 

describes one scenario of the whole system, it would not be easy to implement in a distributed 

way. 

II - 2.2. Rule-based systems 

In rule-based systems, knowledge is stored as rules in the knowledge base. The inference engine 

applies the rules to a set of data and obtains conclusions. The knowledge base includes facts and 

rules representing the knowledge about a particular system from the domain of expertise. A rule 

indicates a relationship between two facts. Its simplest format is[5]: 

IF (Conditions) Then (Facts or Actions) 

Two algorithms of inference in rule-based reasoning are often used: 

Forward chaining starts with the available data and uses inference rules to extract more data. 

In other words, forward chaining is a top-down searching procedure. It searches the rule base 

and when it finds the rule IF part conditions are satisfied, it uses the THEN part as the 

conclusion.  

Figure II-1 Case based reasoning steps. Referenced from [4]. 
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Backward chaining is the reverse. It is a bottom-up searching procedure. An inference engine 

using backward chaining would search the inference rules until it finds one that has a 

consequent (THEN clause) that matches a desired goal. 

Searching strategies are very important for a rule based inference engine in terms of efficiency. 

For a complex system, there are a large number of rules and facts stored in the database to 

represent possible scenarios for the system. Frequently it results in a slow and computationally 

expensive reasoning system.  

The rule-based engine is a well-developed inference method and there exist many commercial 

tools, which can be used to develop a rule based inference engine for a particular system. For 

example, JESS is a rule-based engine-scripting environment written entirely in Sun’s Java 

language by Ernest Friedman-Hill at Sandia National Laboratories in Livermore, CA. JESS uses an 

enhanced version of the Rete algorithm to process rules. Rete was first designed by Dr. Charles 

L. Forgy of Carnegie Mellon University in 1974. The Rete algorithm uses a rooted acyclic directed 

graph to store pattern information. It intends to improve the speed of forward-chained rule 

systems by limiting the effort required to recompute the conflicted set after a rule is fired. 

Rule-based inference engines present some problems when developing a complex system, such 

as: 

- It is almost impossible to list all of the scenarios by using qualitative rules and facts to 

describe the characteristics of a complex system even when the system is static. 

- With a large number of rules and facts, searching the database efficiently is a very 

challenging task. 

- It is very hard to do accurate inference by using a limited set of rules when one part of 

the system states is not just dependent on particular components under our control.  

- It is hard to be distributed for a system with global behaviors. For a loosely coupled 

complex system, each subsystem can have its own relatively independent rule base and 

do the inference locally just by exchanging some facts information from other 

subsystems. However, for a system with global behaviors, by using some local 

inferences, it is very challenging to keep globally consistent inferences. 

- It is difficult to do inference under significant uncertainties by using a pure rule based 

inference engine. 

 

II - 2.3. Fuzzy logic 

Fuzzy logic is a form of many-valued logic derived from fuzzy set theory to deal with reasoning 

that is robust and approximate rather than brittle and exact. Fuzzy logic variables may have a 

truth-value that ranges in degree between 0 and 1. 

An inference engine based on fuzzy logic is used to handle uncertain and imprecise information 

as an extension of expert inference reasoning method. The basic steps of fuzzy logic reasoning 

process[6]: 

1. Transforms crisp inputs into fuzzy inputs by using corresponding input set 

membership functions. 

2. Search the rule base and fire the matched rules. 
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3. Combine the matched rules to get one normalized value. 

4. Defuzzify the normalized value back to the actual value according to corresponding 

output set membership functions. 

Fuzzy logic allows us to deal with approximate reasoning. However, as an extension of 

deterministic rule based inference engine, it shares hardly the same problems for reasoning in 

large-scale complex system as the deterministic rule-based inference engine does. The great 

difference is that fuzzy logic can use truth-values to introduce beliefs that are not true or false. 

This is not a solution to deal with uncertainty. Since results are uncertain when inputs are 

uncertain, the reasoning in complex systems is difficult with fuzzy logic. 

II - 2.4. Bayesian Reasoning 

Bayesian reasoning systems use Bayesian inference that is a method of statistical inference in 

which some kind of evidence or observations are used to calculate the probability that a 

hypothesis may be true, or else to update its previously calculated probability. The term 

“Bayesian” comes from its use of the Bayes’ theorem in the calculation process. 

There are several approaches to use Bayesian inference in intelligent systems. Bayesian 

networks are the key mathematic tool to perform Bayesian inference, but there are two clearly 

different fields: “Bayesian Networks” and “Distributed Bayesian Networks”. 

Bayesian Networks 

The first one is a centralized approach. A formal definition of a Bayesian network is: “a 

probabilistic graphical model that represents a set of random variables and their conditional 

dependencies via a directed acyclic graph (DAG)”[7]. In other words, Bayesian networks are 

graphical models representing cause-effect relationships among different events. It displays the 

logic way of how human being thinks. 

A graphical model consists of nodes and links. The nodes represent variables and the links 

between nodes indicate cause-effect relationships. Links have directions, i.e. a link from   to   is 

different from a link from   to  . If a link from   to  ,   is the cause (parent) and  is the effect 

(child) and vise versa. Each node can be continuous or discrete with finite number of states. All 

of the nodes are connected with each other directly or indirectly through inherent relation in the 

structure of the graph. Such a graphical model can be used to simulate and evaluate how 

changes in some variables could affect the remaining nodes of the system. 

Sometimes, it is difficult to distinguish from which variable is cause and which variable is effect. 

Under such situations, one can choose either of them subjectively without much effect on the 

validity of the model. 

Bayesian Networks and its related theory will be shown in more detail in section II - 4. 

Distributed Bayesian Networks 

The distributed approach works as follows [8]. Instead of propagating all of the information 

everywhere, it is possible to assess first the potential impact of every updating operation on the 

belief of the target node and to limit the updating process so that only relevant information is 

propagated. Doing so will decrease the amount of data traffic in the network and the amount of 

computation expended on interference. 
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However, it is important that the information we choose not to propagate be allowed to 

accumulate at the boundaries and discharge its impact to new areas of knowledge once our 

current set of belief becomes stagnant. 

Essentially, a distributed Bayesian network for state inference includes four aspects as a general 

distributed inference engine does: 

 local information processing 

 partial intermediate information exchange 

 inference global consistency 

 self-organization due to partial damage 

There are several approaches to Distributed Bayesian Networks, some of which will be shown in 

the following section II - 3. 

II - 3. Distributed Reasoning with uncertainty 

Currently, there exist three types of distributed Bayesian networks: Distributed Perception 

Networks (DPNs), Prior/likelihood Decomposable Models (PLDM) and Multiple Sectioned 

Bayesian Networks (MSBNs). All of them provide frameworks with different algorithms to 

partially implement such a conceptual idea of distributed inference engine. In this section, we 

discuss the three distributed Bayesian networks in detail. In addition, another framework is 

introduced. Multiply Entity Bayesian Networks (MEBNs) combine the representational power of 

first-order logic (FOL) and Bayesian Networks (BN). 

II - 3.1. Multiply Sectioned Bayesian Networks 

A MSBN consists of a set of interrelated Bayesian subnetworks each of which encodes certain 

knowledge on a subdomain. Bayesian subnetworks are organized into a Hypertree structure 

such that inference can be performed in a distributed fashion while answers to queries are exact 

with respect to probability theory. 

Each subnetwork only exchanges information with adjacent subnetworks on the Hypertree, and 

each pair of adjacent subnetworks only exchanges information on a set of shared variables. The 

great advantage of this organization is complexity of communication among all agents is linear 

on the number of agents and the complexity of local inference is the same as if the subnet is a 

single agent based BN. 

A more detailed explanation of this distributed reasoning technique is shown in section II - 5 due 

to MSBN is the reasoning technique chosen for this project. 

II - 3.2. Distributed Perception Networks 

Distributed Perception Networks(DPNs)are a distributed architecture for efficient and reliable 

fusion of large quantities of heterogeneous and noisy information [9]. DPNs are composed of 

numerous agents who cooperate with each other to process systematic reasoning. However, 

DPNs have a few restrictions, which limit its application region. 
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DPNs Domain Model 

A DPNs domain model M is defined as a tuple               , where   is the set of local DAGs 

of all DPN agents participating in a particular fusion organization.   is a union of all variables 

from local clusters and      that contains the hypothesis node.             is the set of 

DPN separators and every separator      has to be unique and satisfy restriction 1 (see below). 

P is the set of potentials defined over the DPN domain model and      are the potentials for 

cluster  , where      and             satisfying tree architecture and the running 

intersection property (see II - 4.3). 

A local DAG    with domain    in a DPN domain model contains a single root nodecorresponding 

to a service variable      and a set of input variables corresponding to aset of leaf nodes 

     . The leaf nodes are always the descendants of the service node. 

DPNs have very strict organization constraints, which make its implementation limited to a few 

situations. 

 Restriction 1: for any      , it contains only one unique variable. 

 Restriction 2: when adding a new agent with its cluster domain   , it can connect toonly 

one unique     with a separator   , where    contains only one variable. 

 Restriction 3: two local DAGs    and    with domains    and    respectively canconnect 

each other if and only if the service variable       of    is identical to an input variable 

        , where    is the input variable set of   . 

If one agent joins the system, it should satisfy these three restrictions at the same time. These 

three constraints are too strict. For a realistic system, normally, one agent could connect to 

several agents and an interface (separator set) between two agents contains several variables. A 

local DAG    may contain several root nodes. A node in a separator could be an input variable of 

one local DAG as well as an input variable of another local DAG. 

DPNs deal with three types of agents: static modeling agents, dynamic modeling agents, and 

appendable modeling agents. Each agent type updates its belief by using a specific algorithm.  

Static Modeling Agents 

An agent who implements static modeling building blocks can reason in an integrated way about 

distributions over some quasi-static variables. An event is quasi static if it does not change 

before the resulting observations are interpreted and used in a decision making process. In 

another word, a quasi-static event does not involve for a certain period of time after they have 

been materialized. For example, if a cow were infected, the cow would not be cured during one 

time step of information fusion process. 

Dynamic Modeling Agents 

An agent who implements dynamic modeling building blocks can infer from a time series 

observations. An algorithm for dynamic fusion process is shown in[9]. This algorithm has to 

satisfy two assumptions: 

 All observations are conditionally independent given the sensor propensity. 
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 The generative model is the same for all observations of a certain type. It means that all 

of the observations for the same sensor at different time steps are sampled by using the 

same method and with the same model. 

Appendable Modeling Components 

An agent implements an additional modeling building block. Such an agent is used to support 

extensibility for the multi-agent system and makes it flexible and scalable. An algorithm for 

appendable fusion process is proposed in[9]. 

All of the agents need to collaborate together to achieve a reasoning task which maps available 

observations to some hypotheses. To cooperate smoothly and efficiently, two algorithms are 

used corresponding to two different situations. 

Algorithm 1: Top down network configuration 

This algorithm is used for self-organization based on the collaboration among multiple agents in 

a distributed way without any centralized and dominated control agent in order to answer a 

query of a unique service variable. This algorithm implements a simple self-organization rule: 

when a query of a service variable is made, it searches the agents containing this service 

variable. For each of the matched agents, it starts to look for other agents who connect to it by 

its leaf nodes and satisfy restriction 3. After that, a set of DPNs are formulated, and then use an 

algorithm similar to collect evidence process introduced in II - 5.4 to calculate the potential of 

the queried service variable. In the collect evidence process, different agents will use their 

corresponding algorithms to update their own believes. 

Algorithm 2: Bottom-up Network Configuration 

This algorithm is suitable for situations where it is desirable to organize fusion systems in 

response to unusual observations. It implements a simple self-organization rule: when an 

observation of a leaf variable is available, it searches the agents containing the corresponding 

service variable of this observed leaf node. For each of the matched agents, it starts to look for 

other agents who connect to it by its service variable and satisfy restriction 3. 

In summary, DPNs as a distributed information fusion system has three limitations discussed in 

previous context and the following characteristics [9]: 

 Reasoning for a single hypothesis variable is processed in a distributed way. The 

reasoning result reflects the entire available observations and is identical to the result 

from a single united Bayesian network. 

 It does not need to check initial states consistency before the distributed system can 

work coordinately. Only local models need to be compiled in an independent way prior 

to run time. 

 The information fusion process can work in an asynchronous way, which will improve 

the speed of reasoning process. 

 The information fusion process is automatic and no pre-compilation or on-line check of 

the formulated structure to guarantee globally consistent inference. 
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As discussed before, for globally consistent inference in a distributed Bayesian network, there 

are three prerequisites: 

 All Bayesian subnetworks are organized into a tree structure. 

 The tree structure satisfies running intersection property. 

 Each node shared by two or more sub Bayesian networks should be a d-sepnode. 

DPNs satisfies those three conditions implicitly during the formulation of the network due to its 

strict requirements of individual sub Bayesian network structure and adding new node to the 

system. More detailed discussion of DPNs can be found in [9]. 

II - 3.3. Prior / Likelihood Decomposable Models 

Prior/likelihood decomposable models (PLDMs) was proposed to infer sensor states and bias 

from noisy measurable data in large-scale complex distributed sensor networks in [10]. The 

author pointed out that this method can handle dynamic agent systems, such as adding or 

deleting agents and several damage situations, e.g., damaged communication links between two 

agents, bad data caused by failed sensors in a robust way.  

In sensor networks, each sensor is an agent. It divides all of the variables in the whole network 

into two types: observable variables and latent variables. The observable variables are called 

measurable variables; each measurable variable corresponds to one of the sensors on one of the 

nodes. The latent variables are actually hidden variables, which are called environment 

variables. The latent random variables characterize the state of the sensor networks’ 

environment, such as the true temperature, the true pressure, the bias of a sensor itself, etc. All 

of the measurable variables are children of environment variables and the model needs to 

specify each measurable variable state probability conditioned on its corresponding hidden 

variables. 

The basic idea of PLDMs is to give each node a subset of local priors. Those subsets of local 

priors are organized into a junction tree structure (see II - 4.3) called external junction tree 

structure. In order to increase the robustness of node missing or communication link damages, 

prior for one node can be distributed to several different nodes as redundancy. The prior of one 

node is lost only when no nodes that include this node’s prior are available. The global prior 

distribution is obtained through message passing in the external junction tree similar to the 

normal junction tree belief propagation described in II - 5.4. Message passed between two 

agents is represented as a Prior/Likelihood factor of the shared variables. 

A Prior/Likelihood factor for a set of environment variables   is a pair        where 

   is a prior distribution for  :        . 

   is a likelihood function:          , where   are the observation variables inone 

node. 

In summary, PLDMs has the following limitations for applications other than distributed sensor 

networks. 

 One sensor corresponds to one agent. 

 All of the measurable variables are localized. 
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 All of the variables for the interfaces are belong to the measured variables. 

 It doubles quantities of message passing among agents. 

 It could break the rules of keeping privacy of each individual agent. 

 In order to make globally consistent inferences, pre-compilation or on-line formulation 

and check of the formulated structure are needed 

Detailed discussion of PLDMs can be found in [10]. 

II - 3.4. Multiply Entity Bayesian Networks 

Multi-Entity Bayesian Networks (MEBN) is a first-order probabilistic logic that combines the 

representational power of first-order logic (FOL) and Bayesian Networks (BN). However, MEBN is 

still in development, lacking a software tool that implements their underlying concepts. 

Ontologies play a major role in semantically aware systems, providing a means for highly 

effective knowledge sharing. However, they lack a standardized treatment of uncertainty, a 

ubiquitous feature of multisource fusion problems. 

Uncertainty is ubiquitous to knowledge fusion. Almost any source of primary data carries some 

degree of uncertainty. Bayesian probability is a principled formalism for representing 

uncertainty and drawing inferences in the presence of uncertainty. 

Bayesian networks (BNs) are popular models for representing and reasoning about problems 

involving many related hypotheses. BNs have been widely applied to information and knowledge 

fusion, but are fundamentally limited in their expressive power. Specifically, in a standard 

Bayesian network, all the hypotheses and relationships are fixed in advance, and only the 

evidence can vary from problem to problem. 

Many multi-source fusion problems involve uncertain numbers of interacting entities related to 

each other in ways that cannot be known in advance. For example, there may be an 

indeterminate number of weakly discriminatory reports coming from an unknown number of 

objects, and there may be uncertainty about which report should be associated with which 

object. This kind of fusion problem produces an exponential set of association hypotheses that 

require special hypothesis management methods. 

MEBN logic combines the flexibility of Bayesian Networks with the representational power of 

First-OrderLogic [11]. Among other features, MEBN logic can represent and reason with 

association uncertainty, and thus provides a sound logical foundation for hypothesis 

management in multi-source fusion. 

MEBN represents the world as made up of entities that have attributes and are related to other 

entities. Knowledge about the attributes of entities and their relation-ships to each other is 

represented as a collection of MEBN fragments (MFrags) organized into MEBN Theories 

(MTheories). 

MFrag 

An MFrag represents a conditional probability distribution of the instances of its resident 

random variables given the values of instances of their parents in the fragment graphs and given 
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the context constraints. Random variables are graphically represented in an MFrag either as 

resident nodes, which have distributions defined in their home fragment, or as input nodes, 

which have distributions defined elsewhere. Context nodes are the third type of MFrag nodes, 

and represent conditions assumed for definition of the local distributions. 

Typically, MFrags are small, because their main purpose is to model “small pieces” of domain 

knowledge that can be reused in any context that matches the context nodes. This is a very 

important feature of the logic for modeling complex, intricate situations and is one that can be 

seen as the knowledge representation version of the “divide and conquer” paradigm for 

decision-making. While the latter breaks a hard, complex decision problem in a set of smaller 

ones, the former uses a similar decomposition approach for representing intricate, complex 

military situations. This decomposition is accomplished by modeling a complex situation as a 

collection of small MFrags, each representing some specific element of a simpler situation. The 

additional advantage of MEBN modeling is the ability to reuse these “small pieces” of 

knowledge, combining them in many different ways indifferent scenarios. 

Indeed, MFrags provide a flexible means to represent knowledge about specific subjects within 

the domain of discourse, but the true gain in expressive power is revealed when aggregating 

these “knowledge patterns” to form a coherent model of the domain of discourse that can be 

instantiated to reason about specific situations and refined through learning. It is important to 

note that just collecting a set of MFrags that represent specific parts of a domain is not enough 

to ensure a coherent representation of that domain. For example, it would be easy to specify a 

set of MFrags with cyclic influences (i.e. a random variable which has its probability distribution 

influencing itself), or one having multiple conflicting distributions for a random variable in 

different MFrags (i.e. a random variable with more than one home MFrag, each defining a 

different distribution). 

MTheory 

In order to build a coherent model it is important to make sure that a set of MFrags collectively 

satisfies consistency constraints ensuring the existence of a unique joint probability distribution 

over instances of the random variables mentioned in the MFrags. Such a coherent collection of 

MFrags is called an MTheory, and it represents a joint probability distribution for an unbounded, 

possibly infinite number of instances of its random variables. This joint distribution is specified 

implicitly through the local and default distributions within each MFrag, together with the 

conditional independence relationships implied by the fragment graphs. 

A generative MTheory summarizes statistical regularities that characterize a domain. These 

regularities are captured and encoded in a knowledge base using some combination of expert 

judgment and learning from observation. To apply a generative MTheory to reason about 

particular scenarios, it is needed to provide the system with specific information about the 

individual entity instances involved in the scenario. On receipt of this information, Bayesian 

inference can be used both to answer specific questions of interest and to refine the MTheory. 

Bayesian inference is used to perform both problem specific inference and learning in a sound, 

logically coherent manner. 



Introduction 

18 

 

MEBN logic provides a sound mathematical basis for representing and reasoning under 

uncertainty. PR-OWL uses MEBN’s strengths to provide a framework for building probabilistic 

ontologies, a major step towards semantically aware, probabilistic knowledge fusion systems. 

II - 4. Bayesian Networks 

Bayesian Networks are computational models that allow reasoning and inference in a similar 

way as humans do. They are capable of integrate multiple different data sources to achieve a 

coherent interpretation of these. 

II - 4.1. Definition 

A Bayesian Network is, in essence, an acyclic directed graph (DAG) which defines a factorization 

of a joint probability distribution over the variables that are represented by the nodes of the 

DAG, where the factorization is given by the directed links of the DAG[7]. 

In other words, a Bayesian Network is a graphical probabilistic model made of variables and 

cause-effect relations between them. These variables are the nodes of the Bayesian Network 

and cause-effect relations are represented as directed edges linking pairs of nodes. Each variable 

has a finite set of mutually exclusive states.  

More formally, let node   be a parent of node  . Using probability calculus, we state the 

dependence between   and   by means of a conditional probability table (CPT)      . 

However, if also   is a parent of  , then the two CPTs        and        alone do not give any 

clue on how the impacts from   and   interact. That is why we need a specification of a join CPT 

          . This way, to each variable   with parents           is attached a conditional 

probability table                [12]. 

II - 4.2. Inference in Bayesian Networks 

Rule-based expert systems have demonstrated their fields of use that was perfectly suited by 

means of accurate factors or even by manipulating certainty factors. However, they have severe 

problems when representing incomplete knowledge or reasoning with some degree of 

uncertainty. When dealing with uncertainty, probability theory is the prevailing method.  

Contrary to rule-based systems with certainty factors, inference in Bayesian networks is always 

consistent. A Bayesian Network (BN) is a knowledge representation scheme as well as provides 

effective and efficient inference. BNs provide a coherent and effective framework for decision 

support systems that must function with uncertain knowledge. BNs offer a high level of 

readability by providing a clear graphical representation while allowing for efficient 

computations on certain subclasses of networks. 

Although inference process in BNs is, a priori, more expensive than in other expert system, 

efficient inference algorithms have been developed such that inference in Bayesian networks 

can be done in fractions of a second even for large networks containing hundreds of variables. 

Efficiency of inference, however, is highly dependent on the structure of the DAG, so networks 

with a relatively small number of variables sometimes resist exact inference, in which case 

approximate methods must be applied. 
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As Bayesian networks most often represent causal statements of the kind    , where   is a 

cause of   and where   often takes the role of an observable effect of  , which typically cannot 

be observed itself, we need to derive the posterior probability distribution              given 

the observation     using the prior distribution      and the conditional probability 

distribution         specified in the model. According to Bayes Theorem for performing this 

calculation: 

         
            

      
 Eq. II-1 

where                          .This rule plays a central role in statistical 

inference because the probability of a cause can be inferred when its effect has been observed. 

More formally, a BN is a triplet        .   is a set of nodes. Each node is labeled with a variable 

associated with a space. We shall use “node” and “variable” interchangeably. Therefore,   

represents a problem domain.   is a set of arcs such that         is a directed acyclic graph 

(DAG). We refer to   as the structure of the BN. The arcs signify directed dependencies between 

the linked variables. For each node     , the strengths of the dependencies from its parent 

nodes    are quantified by a conditional probability distribution          of    conditioned on 

the values of   ’s parents. For any three sets  ,   and   of variables,   and   are said to be 

conditionally independent given   under probability distribution   if                

whenever        . The basic dependency assumption embedded in BNs is that a variable is 

conditionally independent of its non-descendants given its parents. This assumption allows  , 

the joint probability distribution (jpd), to be specified by the product             . 

 

Conditional Probabilities 

This can be shown in more detail by analyzing the types of rules in Bayesian Networks. Before 

introducing the most important rule (Chain Rule) in Bayesian networks, we need to introduce 

evidences/observations and product rule first.  

 

Evidence / observations rule 

Evidence / observations are defined as a collection of findings. There are two types of evidences: 

hard evidence and soft evidence. Hard evidence on variable V is a specification of the value of V, 

and soft evidence on variable V is a distribution on the values of V. Normally, in most of 

applications, dealing with hard evidences is enough and most of software can only handle hard 

evidences. 

 

Product Rule 

The Product Rule for probability calculus is the following 

                               Eq. II-2 
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Marginalization 

Let   be a variable with states        , then      is a probability distribution over these 

states: 

                                          

 

   

 Eq. II-3 

where    is the probability of   being in state   . 

From a table        of probabilities          the probability distribution      can be 

calculated. Let    be a state of  . There are exactly   different events for which   is in state   , 

namely the mutually exclusive events                  . Therefore 

               

 

   

 Eq. II-4 

This calculation is called marginalization and we say that the variable   is marginalized out of 

       (resulting in     ). The notation is 

            

 

 Eq. II-5 

 

Chain Rule 

Chain rule is formed by successively applying product rule. It is described in the following. For a 

Bayesian network, its overall space consists of                , then 

                                       

 

   

 Eq. II-6 

Let            be sets of evidences/observations, then the joint probability including the 

observations is 

                                                

 

   

 

   

 Eq. II-7 

And, normalizing the result we obtain 

                           
                        

                               

 Eq. II-8 

For more details, see [13] page 22. 
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II - 4.3. Hugin Architecture: Junction Tree of a Bayesian 

Network 

Among all variations developed, HUGIN is the most efficient junction tree-based architecture. 

The Global Propagation method used in the HUGIN architecture is arguably one of the best 

methods for probabilistic inference in BNs. 

As shown in section II - 4.1, a Bayesian Network (BN) defined over a set of variables is a directed 

acyclic graph (DAG) augmented with a set of conditional probability distributions (CPDs). More 

precisely, each variable is represented as a node in the DAG and is associated with a CPD 

        , where    denotes the parents (also called family) of node    in the DAG of the BN. The 

product of the CPDs in a BN defines the joint probability distributions (JPD) for the BN as: 

                         
 

 

   

 Eq. II-9 

where   the total number of nodes is present in the BN and         
  is the CPD for variable    

in the BN.  

 

 

Figure II-2 A notional Bayesian network example 

 

 

In HUGIN architecture for probabilistic inference, a BN is first transformed into a secondary 

structure called junction tree. 
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Junction Tree 

A Junction Tree (JT) is an undirected tree constructed from a BN whose nodes are clusters (also 

called cliques) of variables (from the original BN). Given two clusters in JT,    and   , every node 

on the path between them contains their intersection        . A Separator     in JT is 

associated with each edge and contains the variables in the intersection between neighboring 

clusters. 

Phases 

HUGIN architecture consists of several phases, the moralization, the triangulation, the 

initialization (of the clusters in the JT) phase, and the propagation phase. The Global Propagation 

method used in the propagation phase for performing message passing is well received and 

implemented. 

Before the propagation, initialization is done to obtain the potential for each cluster in the JT. 

Then with the Global Propagation method, each cluster potential is transformed into cluster 

marginal through passing messages with its neighboring clusters. 

 

The efficiency of belief updating in Bayesian networks is very important for probabilistic 

inferences. Establishing an efficient belief-updating algorithm is fundamental to the application 

of Bayesian networks. Hugin Algorithm is among the most efficient methods known for belief 

updating in Bayesian networks in the state of the art. For this, a simple introduction to this 

algorithm is given below. 

Hugin belief updating algorithm[14] includes a few steps: moralization, triangulation, joint tree 

formulation and full propagation. 

Moralization A moral graph of a Bayesian network is an undirected graph, which connects any 

pairs of variables being members in any         existing in the Bayesian network. 
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Figure II-3 A otional Bayesian Network after Moralization 
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Triangulation In order to introduce the idea of triangulation, first, the concept of perfect 

elimination sequence is introduced. When eliminating a node    in a Bayesian network, we work 

with the product of all potential with    in the domain. The domain of this product consists of    

and all of its neighbors in the moral graph. When    is eliminated, the resulting potentials has all 

of   's neighbors in its domain and all of the variables in this new domain need to be connected 

pare wise. 

 

When some nodes are eliminated, new links could be introduced if this node is the link between 

one or more node, this links are called fill-ins. The introduction of fill-ins indicates that a 

potential of a new domain is presented when a variable is eliminated. Eliminating all of the 

variables in a network one by one forms an elimination sequence and an elimination sequence 

without introducing fill-ins is a perfect elimination sequence. There are several concepts that 

have to be introduced: 

Complete Nodes Set a set of nodes is complete if all nodes in this set are pair wise linked. 

Clique a complete set is a clique if it is not a subset of another complete set, i.e., the maximal 

complete set contains a set of specific nodes. 

Triangulated Graph an undirected graph with a perfect elimination sequence is called a 

triangulated graph. The procedure to triangulate a graph is shown below: 

1. Eliminate a simplicial node    (nodes with a complete neighbor set are called simplicial), 

then this node with its neighbors denoted as    
 is a clique candidate. 

2. If    
 does not include all remaining nodes, go to step 1. 

3. Keep the clique candidates that are not subsets of any other clique candidates. 

4. The resulting set is the set of cliques. 

An undirected graph is triangulated if and only if the cliques of this graph can be organized into a 

join tree.  

Running Intersection Property Let   be a cluster tree over domain . We say   has the 

running intersection property if whenever there is a variable            and    is contained 

in every cluster in the unique path in   between    and   , where    and    are two clusters in 

 [15]. 

Join Tree Let   be the set of cliques from an undirected graph, and let the cliques of   be 

organized into a tree  . If   satisfies the Running Intersection Property, then the tree   is a join 

tree. 

Junction Tree Let   be a triangulated Bayesian network with a set of potentials  . A junction 

tree for   is a join tree for   with the following further structure: each potential      is 

attached to a clique who contains       , each link has the appropriate separator attached, 

each separator contains two mailboxes (one for each direction)[16]. 

There are three key processes for belief propagation in junction trees: Collect Evidence, 

Distribute Evidence and, the combination of both, Full Propagation Evidence[13]. 

Figure II-4 A notional Bayesian Network after triangulation 
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Initialization Phase 

After the JT is built, the initialization phase of the HUGIN architecture sets up the initial 

potentials for the clusters of the JT. A potential is in fact a non-negative function over a set of 

variables. In particular, the CPD of each node from the original BN is assigned to a cluster that 

posses the node itself and its parents. Then, within each cluster, these assigned CPDs are 

multiplied together to form one single potential for the cluster, i.e., the set of CPDs         

assigned to a cluster    are combined to form the initial cluster potential 

   
                  

. 

Global Propagation 

Then the Global Propagation method begins by choosing an arbitrary cluster as a root cluster 

from which the propagation is initiated. A JT with   clusters will have to perform        

message passes starting from the leaves, dividedinto two phases. 

When a cluster receives messages from all its neighbors except that one towards the root, it is 

allowed to send a message upwards, and so on until the root cluster has received messages from 

all its neighbors. This is called the COLLECT-EVIDENCE. 

Now the root cluster sends a message to all its neighbors, and every cluster receiving a message 

itself, sends another one to all its neighbors except the one from which it received the message, 

and so on until the leaves are reached. This is called DISTRIBUTE-EVIDENCE. 

After these two rounds of message passes, the cluster potentials of the JT become cluster 

marginals. 

Absorb mechanism 

A single message passing in the Global Propagation method of HUGIN architecture is from one 

cluster of the JT to another cluster through the separator. It requires a large number of 

arithmetic operations. 

Consider two adjacent clusters    and    with the separator     in Figure II-5. The single 

message passing is shown in Figure II-5, where cluster    sends a message through the separator 

    to cluster   . 

 

 

 

 

Cluster    passing a message to cluster    (or    absorb the message form   ) means that a two-

step computation needs to be done in sequence: 

          

          

Figure II-5 Single message passing through a separator 
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4. Updating the separator potential     by setting 

   
         

     
   

      

 Eq. II-10 

5. Updating the cluster potential by setting 

  
      

       
    Eq. II-11 

The potential new    
    is the so-called “message” passed from cluster    to cluster    in the JT. 

Thus, a single message passed by the Global Propagation method requires three kinds of 

arithmetic operations: summations, multiplications and a substantial number of divisions. As 

HUGIN needs        messages to be passed, huge numbers of arithmetic operations are 

required to process these messages. 

As the initialization phase is concerned with the formation of cluster potentials and potentials 

actively participate in the propagation phase through message passing, the improvement of the 

initialization phase can also improve the performance of the Global Propagation method of 

HUGIN architecture. 

II - 4.4. Building Bayesian Networks 

As described above, a Bayesian network can be described in terms of a qualitative component, 

consisting of a DAG, and a quantitative component, consisting of a joint probability distribution 

that factorizes into a set of conditional probability distributions governed by the structure of the 

DAG. The construction of a Bayesian network thus runs in two phases.  

 First, given the problem at hand, one identifies the relevant variables and the (causal) 

relations among them.  

 The resulting DAG specifies a set of dependence and independence assumptions that 

will be enforced on the joint probability distribution, which is next to be specified in 

terms of a set of conditional probability distributions,         
 , one for each “family”, 

         , of the DAG. 

A Bayesian network can be constructed manually, (semi-)automatically from data, or through a 

combination of a manual and a data driven process, where partial knowledge about structure as 

well as parameters (i.e., conditional probabilities) blend with statistical information extracted 

from databases of cases (i.e., previous joint observations of values of the variables). Manual 

construction of a Bayesian network can be a labor-intensive task, requiring a great deal of skill 

and creativity as well as close communication with problem domain experts. Extensive guidance 

on how to manually construct a probabilistic network can be read in [7]. This includes methods 

and hints on how to elicit the network structure (with emphasis on the importance of 

maintaining a causal perspective), methods for eliciting and specifying the parameter values of 

the network, and numerous tricks that can be applied for solving prototypical modeling 

problems. 

Once constructed (be it manually or automatically), the parameters of a Bayesian network may 

be continuously updated as new information arrives. 
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Thus, a model for which rough guesses on the parameter values are provided initially will 

gradually improve itself as it is presented with more and more cases. 

II - 4.5. Inference Engines 

A huge quantity of Inference engines is available over the world. In this section, we introduce 

the main Inference Engines for Bayesian Networks with which we have had some experience. 

Each one has different characteristics and algorithms. We briefly introduce also some of their 

algorithms and their main features. 

II - 4.5.a. SamIam 

SamIam is a tool for modeling and reasoning with Bayesian networks developed completely in 

Java by the Automated Reasoning Group of Professor Adnan Darwiche at UCLA. 

SamIam includes two main components: a graphical user interface and a reasoning engine. The 

graphical interface lets users develop Bayesian network models and save them in a variety of 

formats. The reasoning engine supports many tasks including: classical inference, parameter 

estimation, time-space tradeoffs, sensitivity analysis and explanation--generation based on MAP 

and MPE. 

SamIam has a tool called Code Bandit, which is intended to make it easy and fun for Java 

programmers to learn how to write code based on our inference library Code Bandit writes 

smart sample code for you, based on settings you configure in SamIam. For example, if you need 

to use our library to build Bayesian network models, Code Bandit can write a sample program 

that shows you what methods to call. Code Bandit can also write programs that demonstrate 

how to execute queries on existing models. Code Bandit is intended to make it easy and fun for 

Java programmers to learn how to write code based on our inference library. 

SamIam supports the Expectation Maximization algorithm for estimating network parameters 

based on given data. SamIam adopts the "case file" format of Hugin for specifying data as a set 

of cases. SamIam includes utilities for generating data randomly from a given network and for 

storing this data in case files. 

SamIam supports a number of algorithms for inference in Bayesian networks, such as: 

 Three implementations of the join tree algorithm based on: the Hugin architecture, the 

Shenoy-Shafer architecture, and a new architecture that combines the best of previous 

architectures. 

 An implementation of the Recursive Conditioning algorithm with a time--space tradeoff 

engine. 

SamIam supports non--classical queries, such as the computation of partial derivatives with 

respect to network parameters. It also supports query--specific inference, which prunes the 

Bayesian network based on given query before inference algorithms are applied. 

SamIam provides an engine for sensitivity analysis in Bayesian networks. The sensitivity analysis 

engine allows us to specify constraints on network queries and will then identify minimal 

parameter changes that are necessary to satisfy these constraints. This functionality allows 

understanding the relationship between local parameters that quantify a Bayesian network, and 

global conclusions drawn from the network. 
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SamIam supports opening files in six formats for defining Bayesian networks: the Hugin.net 

format, the Genie .dsl and .xdsl formats, the Interchange.dsc format used by the Microsoft 

Bayesian Network Toolkit, the Netica.dne format and the Ergo .erg format.  

For Hugin .net files, SamIam supports editing and saving conditional probability table (CPT) 

values for discrete nodes, the structure of the network, and the appearance of the network. 

For each of the other five file types, including Genie .dsl files, SamIam supports editing and 

saving only the CPT and noisy-or weight definitions. The types of nodes defined within the Genie 

program that SamIam understands are "chance" nodes defined by CPT or noisy-or semantics and 

nodes of type "deterministic." SamIam also understands the Genie definitions of nodes as 

"target," "observation", and "auxiliary", and the definition of states as "target" and/or "default", 

and Genie sub-models.  

II - 4.5.b.  Algorithms implemented in SamIam 

II - 4.5.b.1. Hugin Algorithm 

Hugin Algorithm is among the most efficient methods known for belief updating in Bayesian 

networks in the state of the art. 

SamIam implements a version of Hugin algorithm that uses terminology different from usual. 

This fact and the fact that SamIam code is not available make we do not give more details about 

this implementation of the algorithm. However, a more comprehensive description of the usual 

Hugin Algorithm is shown in section II - 4.3. 

 

II - 4.5.b.2. Shenoy-Shafer Algorithm 

Shenoy-Shafer propagation proceeds as follows[17]. First, evidence   is entered into the jointree 

through evidence indicators. A cluster is then selected as the root and message propagation 

proceeds in two phases, inward and outward. In the inward phase, messages are passed toward 

the root. In the outward phase, messages are passed away from the root. 

Cluster   sends a message to cluster   only when it has received messages from all its other 

neighbors . A message from cluster   to cluster   is a table     defined as follows: 

       

      

    

   

 Eq. II-12 

where    is the product of CPTs and evidence tables assigned to cluster  . 

Once message propagation is finished in the Shenoy–Shafer architecture, we have the following 

for each cluster   in the jointree: 

               

 

 Eq. II-13 

Let us now look at the time and space requirements of the Shenoy–Shafer architecture. The 

space requirements are simply those needed to store the messages computed by Eq. II-12. 
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That is, we need two tables for each separator    , one table stores the message from cluster   

to cluster  , and the other stores the message from   to  . We will assume in our time analysis 

below the availability of the table   , which represents the product of all CPT and evidence 

tables assigned to cluster  . This is meant to simplify our time analysis, but we stress that one of 

the attractive aspects of the Shenoy–Shafer architecture is that one can afford to keep this table 

in factored form, therefore, avoiding the need to allocate space for this table, which may be 

significant. 

As for time requirements, suppose that we have a jointree with   clusters and width  . Suppose 

further that the table    is already available for each cluster  , and let us bound the amount of 

work performed by the inward and outward passes of the Shenoy–Shafer architecture, i.e., the 

work needed to evaluate Eq. II-12  and Eq. II-13. 

We first note that for each cluster  , Eq. II-12 has to be evaluated    times and Equation Eq. II-13 

has to be evaluated once, where    is the number of neighbors for cluster  . Each evaluation of 

Eq. II-12 leads to multiplying    tables, whose variables are all in cluster   . Moreover, each 

evaluation of Eq. II-13 leads to multiplying      tables, whose variables are also all in cluster 

  . The total complexity (since multiplying   elements requires     multiplications) is then: 

                                 

 

 Eq. II-14 

which reduces to      
          , where    

 
  is a term that ranges from      to       

depending on the jointree structure.  

Given a Bayesian network with   variables, and an elimination order of width  , we can 

construct a binary jointree for the network with the following properties: the jointree has width 

    ,and no more than        clusters.Hence, we can avoid the quadratic complexity 

suggested above by a careful construction of the jointree, although this can dramatically 

increase the space requirements. 

II - 4.5.b.3. Combination Hugin & Shenoy-Shafer Algorithms 

The Hugin and Shenoy–Shafer architectures are two variations on the jointree algorithm, which 

exhibit different tradeoffs with respect to efficiency and query answering power[17]. The Hugin 

architecture is more time–efficient on arbitrary jointrees, avoiding some redundant 

computations performed by the Shenoy–Shafer architecture. This efficiency, however, comes at 

the price of limiting the number of queries the Hugin architecture is capable of answering. 

SamIam implements a simple algorithm, which retains the efficiency of the Hugin architecture 

and enjoys the query answering power of the Shenoy–Shafer architecture. 

The combination of the Shenoy–Shafer and Hugin architectures uses zero conscious 

tables/potentials. The use of these tables provide a simple way to exploit the efficiency of the 

Hugin method, while extending the set of queries that can be answered efficiently. For the price 

of a single bit per cluster entry, and some minimal logic operations, all queries answerable using 

Shenoy–Shafer propagation can now be answered using Hugin type operations. 
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For applications that require more than just marginal probabilities, such as local search methods 

for MAP and sensitivity analysis, this can produce a significant speed up over the use of Shenoy–

Shafer architecture. 

II - 4.5.b.4. Recursive Conditioning Algorithm 

Recursive Conditioning, RC, is an any-space algorithm for exact inference in Bayesian networks. 

It is driven by a structure known as a dtree, which recursively decomposes a network into two 

smaller subnetworks until the subnetworks only consist of a single CPT. The RC algorithm can 

then solve each subnetwork independently and merge the localized results together to calculate 

the desired probability. Many different dtrees exist for a network, and the way the network is 

decomposed dramatically affects the resource requirements. Therefore, SamIam allows the user 

to experiment with different dtrees by choosing the elimination order heuristic SamIam uses as 

the initial step in creating the dtree. More about this algorithm can be read in [18]. 

II - 4.5.c. UnBBayes 

UnBBayes is a probabilistic network framework written completely in Java. It has both a GUI and 

an API with reference, sampling, learning and evaluation. It supports BN, ID, MSBN, OOBN, HBN, 

MEBN/PR-OWL, structure, parameter and incremental learning[19]. 

UnBBayes is an open-source tool, what allows us the implementation of our own code, our own 

plug-ins or the modification of the existing code. UnBBayes is a plug-in framework that lets you 

add only that plug-ins that you need for your work. 

A plug-in consists of a computer program that interacts with the host application of UnBBayes, 

to provide specific functionalities. The content of an ordinal UnBBayes plug-in is: 

 Plug-in descriptor (XML file) 

 Classes (a program) 

 Resources (e.g. icons, message files...) 

Plug-ins has several benefits, such as reduce the size of each application and organize the system 

by means of modularization. 

II - 4.5.d. Algorithms implemented in UnBBayes 

UnBBayes allows the use of several algorithms. For BN, the most important is the Hugin 

Algorithm, which is described below. 

II - 4.5.d.1. Hugin Algorithm 

The efficiency of belief updating in Bayesian networks is very important for probabilistic 

inferences. Establishing an efficient belief-updating algorithm is fundamental to the application 

of Bayesian networks. Hugin Algorithm is among the most efficient methods known for belief 

updating in Bayesian networks in the state of the art. For this, a more detailed explanation is 

given in section II - 4.3. 

II - 4.5.e. Genie & Smile 

GeNIe is a development environment for building graphical decision-theoretic models. It has 

been developed at the Decision Systems Laboratory, University of Pittsburgh. They make it 

available to the community to promote decision-theoretic methods in decision support systems.  
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GeNIe's name and its uncommon capitalization originate from the name Graphical Network 

Interface, given to the original simple interface to SMILE, our library of functions for graphical 

probabilistic and decision-theoretic models. GeNIe is an outer shell to SMILE. 

GeNIe is implemented in Visual C++ and draws heavily on the MFC (Microsoft Foundation 

Classes). This makes it not easily portable, although it runs under one of the most popular 

computing platforms: Windows operating systems. GeNIe allows for building models of any size 

and complexity, limited only by the capacity of the operating memory of your computer. GeNIe 

is a developer environment. Models developed using GeNIe can be embedded into any 

applications and run on any computing platform, using SMILE, which is fully portable. 

SMILE (Structural Modeling, Inference, and Learning Engine) is a fully platform independent 

library of functions implementing graphical probabilistic and decision-theoretic models, such as 

Bayesian networks, influence diagrams, and structural equation models. Its individual functions, 

defined in SMILE Applications Programmer Interface, allow creating, editing, saving, and loading 

graphical models, and using them for probabilistic reasoning and decision making under 

uncertainty. 

SMILE is a portable library of C++ classes implementing graphical decision-theoretic methods, 

such as Bayesian networks and influence diagrams, directly amenable to inclusion in intelligent 

systems. Its Windows user interface, GeNIe is a versatile and user-friendly development 

environment for graphical decision-theoretic models. 

SMILE also provides Java and .NET wrappers for users who want to use SMILE with languages 

other than C++. SMILE is equipped with an outer shell, a developer's environment for building 

graphical decision models, known as GeNIe. GeNIe is platform dependent and runs only on 

Windows computers. SMILE can be embedded in programs that use graphical probabilistic 

models as their reasoning engines. Models developed in SMILE can be equipped with a user 

interface that suits the user of the resulting application most. 

Unlike other tools, GeNIe allows associating Properties to networks and nodes. These properties 

can be used to add information to the Bayesian Network that is not directly related to the 

probabilistic network but to the real world part modeled in the Bayesian Network. 

II - 4.5.f. Netica 

Netica is a commercial Bayesian Network tool designed to be simple, reliable, and high 

performing. Netica is a powerful, easy-to-use, complete program for working with belief 

networks and influence diagrams. It has an intuitive and smooth user interface for drawing the 

networks, and the relationships between variables may be entered as individual probabilities, in 

the form of equations, or learned from data files (which may be in ordinary tab--delimited form 

and have "missing data"). Values or probabilities may be displayed in a number of different 

ways, including bar graphs and meters. The knowledge can be transferred between networks by 

cutting and pasting, or saved in modular form by creating a library of nodes with disconnected 

links. 

Netica can perform various kinds of inference algorithms. Given a new case of which we have 

limited knowledge, Netica can find the appropriate probabilities for all the unknown variables.  
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Netica can use influence diagrams to find optimal decisions, which maximize the expected values 

of specified variables. Netica can construct conditional plans, since decisions in the future can 

depend on observations yet to be made and the timings and inter-relationships between 

decisions are considered. 

Netica can be used to transform a network in a number of ways. Variables that are no longer of 

interest may be removed without changing the overall relationships between the remaining 

variables (technically, the probabilities are "summed out" when we don't know the variable's 

value, and a more complex operation is used when we do). Probabilistic models may be explored 

by such operations as reversing individual links of the network, removing or adding causal 

influences, optimizing one decision at time, etc. These operations may be done with just a click 

of the mouse, which makes Netica very suitable for easy exploring, and for teaching belief 

network and influence diagram concepts. 

II - 4.5.g. File formats used by inference engines 

Each inference engine has been developed to deal with different file formats when saving or 

loading Bayesian networks. This makes information sharing between them more difficult or use 

different inference engines for different parts of the same project. 

In this point, a recapitulation of those file formats used is done. It is needed to know what 

inference engines we are going to use before start developing our project because, although 

conversion between different file formats is not difficult at in general, little information could be 

lost in the conversion. 

The file formats that each inference engine can manage can be read in the following table. 

 

Inference Engine Data Formats 

SamIam .net (full supported), .dsl, .xdsl, .dsc, .dne, .erg 

UnBBayes .net, .xml (XMLBIF) 

Genie & Smile .xdsl, .dsl, .erg, .dne, .dsc, .net, .dxp 

Netica .dne, .neta, .net, .dxp, .dsc, .ergo 

Table II-1 Inference engines data formats 

 

Hugin [.net] Format used by Hugin (Hugin is Copyright © Hugin Expert A/S).  

XDSL [.xdsl] This is new XML based native format of the library. For this reason, it is the one 

that best supports all the features included in SMILE, and is the one we recommend.  

DSL [.dsl] This is the Genie &Smile old native format of the library, which is not supported any 

more. For this reason, all the previous users are strongly advised to switch to new XDSL format.  

Ergo [.erg] Format used by Ergo (Ergo is a trademark of Noetic Systems Incorporated). This 

simple format only supports random variables. You will lose any other information that your 

network contains when saving using this format.  
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Netica [.dne] Format used by Netica for net files in text form (Netica is a trademark of Norsys 

Software Corp).  

Neta [.neta] Format used by Netica for net files in binary form (Netica is a trademark of Norsys 

Software Corp).  

Microsoft MSBN [.dsc] Format used by Microsoft Bayes Networks (Microsoft MSBN32 API 

Library Copyright Microsoft Corp.).  

KI [.dxp] Format used by DXpress (DXpress is a trademark of Knowledge Industries). 

II - 4.6. Directed Cycles in Graphical Models 

As we know, Bayesian networks are directed acyclic graphical models. Bayesian networks cannot 

handle directed cycles in the model[4]. This makes sense because Bayesian networks are cause-

effect models. If there is a directed cycle, the effect becomes the cause and the inference 

process will be stuck into an infinite loop or some conflicts. 

As mentioned before, Bayesian Networks cannot handle cycles, so we need a way to break those 

cycles but still keep the system characteristics and perform consistent inference reasoning. 

 

 

 

The first method is to break the directed cycle at one point. For example, if the edge connecting 

A and F is deleted, the two directed cycles shown in Figure II-6 are broken and the results are 

shown in Figure II-7. However, by doing that, the information between nodes connected with 

that edge is lost. 

 

 

A B C 

D E F 

A B C 

D E F 

Figure II-6 Example of a Directed Cycle in Bayesian Networks 

Figure II-7 First Method. Breaking the directed cycle 
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The second method is to change the direction of one edge in a directed cycle if the directions of 

some edges are not very important. For example, if the direction of edge between A and F is 

changed from A to F, there is no directed cycle anymore and the result is shown in Figure #. This 

method is simple and does not complicate the existed Bayesian network. However, this method 

is based on the assumption that cause-effect relationship is not significant between two nodes 

and is limited to certain applications. 

 

 

The third method is to add an intervention (an instantiation of a node) to break the cycle. As we 

know, in the sum-product algorithm for discrete Bayesian network inference, when a node   is 

explicitly instantiated to a specific value, the conditional probability function           will be 

removed from the sum-product equations. Viewing this removing action graphically, the edges 

into this specifically instantiated node are deleted from the graphical model. For example, in the 

simple Bayesian network shown, if node   is instantiated to a specific value, the mass probability 

function        will be removed from the sum-product equation: 

                                                          . 

Viewing that removal graphically, the directed edge from F to A be removed and the resulted 

graph is shown in Figure II-9.  

Compared with the first method, the resulted graph looks as the same. However, the third 

method does not lose any information and it requires a node being instantiated. If this node 

cannot be instantiated, other nodes in the cycle can be candidates to be instantiated and will 

break the cycle as well. If no node can be instantiated (observed) in a directed cycle, the third 

method cannot be used. By using the third method, it simplifies the model and keeps the system 

internal cause-effect relationships.  

 

 

A B C 

D E F 

A B C 

D E F 

Figure II-8 Second Method. Changing the direction of one edge 

Figure II-9 Third Method: Adding an intervention 



Introduction 

34 

 

II - 5. Multiply Sectioned Bayesian Networks in detail 

Bayesian networks (BNs) provide a coherent and effective framework for decision support or 

diagnosis systems that must function with uncertain knowledge. However, as the problem 

domains become larger and more complex, modeling a domain as a single BN and conducting 

inference in it becomes increasingly more difficult and expensive. 

Multiply Sectioned Bayesian Networks (MSBNs) provide one alternative to meet this challenge 

by relaxing the single BN paradigm. The framework allows a large domain to be modeled 

modularly and the inference to be performed distributively, while maintaining the coherence. 

The framework can be applied under the single agent paradigm as well as the multi-agent 

paradigm. It supports hierarchical model based diagnosis and modeling large systems with the 

object-oriented paradigm. 

A MSBN is a set of subnetworks that form a concrete tree structure and share information 

sharing some nodes between them. Each one of these subnetworks can be contained in any 

program. In our work, we will associate the concept of program with the Intelligent Agent 

concept. In artificial intelligence, an intelligent agent (IA) is an autonomous entity, which 

observes and acts upon an environment and directs its activity towards achieving goals.  

Although our developed MSBN framework could be used from any other program, we will focus 

on agent paradigm to make explanations simpler. 

II - 5.1. MSBN Framework 

A BN is a triplet        , where   is a set of domain variables,   is a directed acyclic graph 

(DAG) whose nodes are labeled by elements of  , and   is a joint probability distribution (JPD) 

over  .   encodes conditional independencies among variables in  . 

A form of representation for a BN is Junction Tree (JT) (see II - 4.3). In a JT, each cluster consists 

of a subset of the domain variables. Each cluster acts as a unit / object in message passing during 

inference. Similarly, a MSBN partitions a large domain into a Hypertree of some natural 

subdomains. Such subdomains become the units for distribution. A Hypertree can be probed to 

be a JT. 

MSBN partitions a large domain into a Hypertree, which is analogous to a JT of a single BN. This 

is the first level of application of the JT representation in MSBNs. On the other hand, a cluster in 

a JT has no internal structure. The belief over a cluster is represented as a potential (non-

normalized probability distribution) over all variables in the cluster. Since a subdomain in a large 

domains itself large in general, representing it as a cluster is neither feasible nor necessary. 

Instead, a MSBN represents each subdomain as a Bayesian network called a subnetwork. 

A MSBN   is a collection of Bayesian subnetworks that together defines a BN.   represents 

probabilistic dependence of a total universe partitioned into multiple subdomains each of which 

is represented by a subnetwork. 
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In an MSBN  , a set of    Bayesian subnetworks              populates a total universe   

of variables. Each subnet has knowledge over a subdomain      encoded as a Bayesian 

subnetworks           . The collection                of local DAGs encodes subnetwork’s 

knowledge of domain dependencies. Local DAGs should overlap and be organized into a 

Hypertree. Adjacent subnetworks exchange information over their overlapped variables. 

The partition should satisfy certain conditions to permit coherent distributed inference. One 

condition requires that nodes shared by two subnets form a d-sepset, as defined below. 

Let                        be two graphs. The graph                   is 

referred to as the union of   and   , denoted by        . 

In a JT of a single BN, a message sent by a cluster   to an adjacent cluster    is a belief table over 

their intersection     , called sepset (which labels the link between the clusters). Like a cluster 

in a JT, a sepset has no internal structure. In a large domain, the intersection of two subdomains, 

called a d-sepset, is also large in general. Hence, more compact representation of the d-sepset is 

desired. The MSBN framework represents each d-sepset also as a JT, called a linkage tree, which 

allows a more efficient representation of the message passed between subdomains. This is the 

third level of application of the JT representation in MSBNs. 

D-Sepset 

A d-sepset is the set of nodes that are shared between two subnetworks whose parents are in 

one of the two subnetworks. A more formal definition can be read above. 

Let                    be two DAGs such that         is a DAG. Theintersection 

        is a d-sepset between    and    if for every node     with its parents   in  , 

either      or     . Each node    is called a d-sepnode. 

In Figure II-11 above, a example of d-Sepset is shown.  

5part2c 

5part4c 

5part5c 5part3c 

5part1c 

var_0 

var_1 A 

B 

A 

B 

var_2 C 

D 

var_5 

E C 

D 

var_4 

var_3 

F 

var_6 

E C F 

G 

H 

var_9 var_8 

var_7 

var_11 

var_12 

var_10 

G 

H 

Figure II-10 A notional MSBN called 5partc 
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A d-sepset is a sufficient information channel for passing all relevant evidence from one subnet 

to another. Formally, a pair of subnets is conditionally independent given their d-sepset. 

Hypertree MSDAG 

Just as the structure of a BN is a DAG, the structure of a MSBN is a multiply sectioned 

DAG(MSDAG) with a Hypertree organization. That is to say, subnetworks in MSBN M are 

organized in a tree structure, where each subnetwork    is known as a Hypernode and each 

existing interface between two Hypernodes is known as a Hyperlink or Linkage. In this graph, 

nodes will be Hypernodes, and edges will be hyperlinks. Graphically, a Hyperlink separates the 

Hypertree MSDAG into two subtrees. Semantically, this corresponds to the conditional 

independence given the d-sepset. 

As it is seen, we can use subnetwork or Hypernode interchangeably, as well as Linkage instead 

Hyperlink. 

A Hypertree MSDAG       , where each    is a DAG, is a connected DAG constructible by the 

procedure described below. 

Building a Hypertree MSDAG 

Start with an empty graph (no node). Recursively add a DAG   , called a Hypernode, to the 

existing MSDAG    
  subject to the constraints: 

 [d-sepset] For each        ,           is a d-sepset when only    and    are 

considered. 

 [local covering] There exists         such that, for each             , we 

have      . 

For an arbitrarily chosen such   ,     is the Hyperlink between    and    which are said to be 

adjacent. 

It can be proven that if each Hypernode    of a Hypertree MSDAG is replaced by the cluster   

and each Hyperlink between    and    is replaced by the d-sepset   , then the resultant isa JT. 

d-sepset 

d-sepset 

d-sepset E C F 

var_9 var_8 

var_7 

Figure II-11 D-Sepset examples 
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Public Nodes 

Nodes shared between two Hypernodes are known as public nodes or shared nodes. A more 

formal definition is shown below. 

Let    be a Hypernode in MSBN  , and let    have a subset of nodes     , which are also part of 

other Hypernodes. Then, each node contained in this subset of shared nodes      is known as a 

public node. 

Hypernode 

A Hypernode or Subnetwork is a Bayesian Network. The only particularity of this Bayesian 

Network is that it is related to other Hypernode by mean of Hyperlink. A Hypernode is part of 

the Hypertree of the MSBN and it has necessarily to be connected to at least other Hypernode 

through a Hyperlink. 

Link 

A link is an association between two cliques from different Hypernodes, which contain the same 

public nodes. These public nodes shared between both cliques need to form a d-sepset. 

A link has three cliques that identify it: host0, clique and host1. Cliques host0 and host1 are 

cliques in the subnetworks associated by this link. Clique clique is the d-sepset build from the 

intersection of host0 and host1. 

Let    be a Hypernode descendant from Hypernode    in the Hypertree. Let    be a clique in   , 

and    be a clique in   . Let     be a d-sepset between    and   , whose nodes are all 

contained in both   and   . Then, there exists a Link     
 that has     as clique of the link and    

and    as cliques host1 and host2 respectively, according to the Hypertree offspring. 

Hyperlink 

A Hyperlink or Linkage establishes a link between two Hypernodes. Every Hypernode in the 

Hypertree (in the MSBN) is connected directly or indirectly to any other Hypernode through one 

or more than one Hyperlink respectively. Each Hyperlink serves as the information channel 

between subnetworks connected. It is referred to as a subnetwork interface. 

Let    be a Hypernode direct descendant (child) from Hypernode    in the Hypertree. Then, 

there exists a Hyperlink  , which has all existing links      
  between    and    in its link list. 

The parent Hypernode    is called the net0 of this Hyperlink   and child Hypernode    is called 

the net1 of the Hyperlink  . 

Root Hypernode 

5part5c 

5part4c 

5part3c 5part2c 5part1c 

Figure II-12 Hypertree MSDAG for the notional MSBN 
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Linkage Tree 

All d-sepsets in the links of a Hyperlink are associated forming a junction tree known as Linkage 

Tree. 

Let      
  be the set of d-sepset cliques belonging to all existing links      

  in Hyperlink  . Since 

those links      
  belong to Hyperlink  , set of d-sepset cliques      

  has a Junction Tree 

structure. 

 

To summarize, the process necessary to allow inference through a MSBN and communication of 

beliefs between its Hypernodes, require a fairly complex structure. This structure divides the 

MSBN in Hypernodes or subnetwork, which are connected through Hyperlinks or Linkages. 

Linkages are made of the public nodes of the subnetworks, and are divided in Links according to 

the structure of cliques present in each Hypernode. 

II - 5.2. MSBN Phases 

The process of use of a MSBN is divided in three well-differentiated phases: 

1. Subnetworks Load Phase 

2. Compilation Phase 

3. Query phase  

Load phase (Phase 1) is a trivial one and will be shown in short. Nevertheless, Compilation Phase 

(Phase 2) is the focus of the following section II - 5.3 in which it is explained in more detail. 

Load phase involves reading a file with the information about the corresponding Bayesian 

network/s. With this information, a new object representing a Bayesian Network will be 

constructed. The type of file and the way of loading the subnetwork depend on the program 

used as we have described in section II - 4.5. 

The number of files to read depends on the architecture used. In single-agent architecture (II - 

5.4) all subnetworks are loaded at the same time while, in multi-agent architectures (IV - 2.1, IV - 

2.2) each agent load only the subnetwork/s that it own. 

II - 5.3. Compilation process 

The compilation of the MSBN allows carrying out inference and queries. Similarly as in a simple 

BN, some processes are needed to be done before perform inference. Those processes are, in 

summary, the following: 

1. Build Hypertree 

2. Moralize 

3. Triangulate 

4. Compile Junction Tree 

5. Make Linkage Tree 

6. Initialize Beliefs 
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These processes can vary a little depending on the distributed architecture. However, the role 

they have is the same for all architectures. Now a more detailed explanation of these processes 

is given. Only the theory is shown in this section. For a more programmatic detailed explanation, 

it can be seen sections II - 5.4, IV - 2.1 and IV - 2.2, according to each architecture. 

II - 5.3.a. Build Hypertree 

To build the Hypertree of the MSBN is assigning the parents and adjacent subnetworks to each 

subnetwork resulting in a Hypertree structure (see II - 5.1). It is needed to be done in a 

centralized way. A subnetwork is arbitrary selected as root Hypernode. At the beginning, only 

the root subnetwork belongs to the Hypertree. Then, recursively, linkages are assigned between 

the subnetwork that is not in Hypertree yet and has the largest amount of nodes in common 

with another subnet that is already in Hypertree. 

Then, the following loop is executed: 

 

 

 

II - 5.3.b. Moralize 

A V structure is formed when a node has two parent nodes. An example of V structure is shown 

in subnetwork 5part2c in Figure II-13. Thus, due to V structure, if evidences of node var_2 are 

fixed, probabilities of A’s states will change if the probabilities of B’s states change. A fill-in is an 

undirected arc that indicates dependence between two nodes. In Figure II-13, two fill-ins can be 

seen between var_0 and var_1, and between A and B, in subnetworks 5part1c and 5part2c 

respectively. 

The first action a subnetwork needs to do to allow moralization is local moralization. That is, look 

for all V structures and add corresponding fill-ins.  

 

 

Code II-1 Hypertree Building Loop 

while (Not all subnetworks in Hypertree) do 

 Calculate the greatest possible d-sepset between a 

subnetwork that is not in Hypertree yet and another that 

belongs to Hypertree. 

 Create a new Linkage between subnetworks chosed. 

 Set the parents and adjacent subnetworks of both 

subnetworks respectively. 

end while 

5part2c 5part1c 

var_0 

var_1 A 

B 

A 

B 

var_2 

Figure II-13 Moralization Example. V structure. 
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Then, each fill-in is sent to each subnetwork that has the two nodes linked by the fill-in shared. A 

subnetwork that receives a fill-in should add this to its Markov arcs list. The Markov arcs list is a 

list with all arcs added during moralization and triangulation pointing dependencies non-

explicitly shown in the original BN. In the example shown in Figure II-13, subnetwork 5part2c 

need to send a fill-in between     to subnetwork 5part1c. 

II - 5.3.c. Triangulate 

Triangulation, as described in II - 4.3, is a process where an elimination order for the nodes of a 

subnetwork is defined. The only condition to allow the elimination of a node is that all its 

adjacent nodes are adjacent to each other. If two nodes adjacent to a node are not adjacent to 

each other, a new fill-in needs to be added to the Markov Arcs List (see II - 5.3.b) of the 

subnetwork. If the nodes linked by the fill-in are shared with another subnetwork, this fill-in 

needs to be sent to the other subnetwork to be added. 

 

For example, as we see in Figure II-14, if  , an adjacent of  , is not adjacent of  , another 

adjacent of  , then a new fill-in between     needs to be added in subnetwork 5part2c. This 

new fill-in needs to be sent and added to subnetwork 5part3c since   and   are shared nodes. 

 

 

 

II - 5.3.d. Compile Junction Tree 

To compile the Junction Tree, a subnetwork needs to associate a separator or clique to each 

node and initialize tables of separators and cliques as well as marginal probabilities in each node. 

This is a very condensed description that can be extended with details in sections II - 5.4, IV - 2.1 

and IV - 2.2. 

II - 5.3.e. Make Linkage Tree 

By Making the Linkage Tree of a MSBN, we mean make the Linkage Tree of each Linkage in the 

MSBN. This process involves the creation of a new JT assigned to each Linkage. In each Linkage, a 

5part2c 

5part3c 

A 

B 

var_2 C 

D 

var_5 

E C 

D 

var_4 

var_3 

Figure II-14 Triangulation Example. Shown moralization fill-ins in red and triangulation fill-in in green. 
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Link is created between each corresponding cliques. To each link, a host0, clique and host1 

cliques are assigned as defined in section II - 5.1. Then, tables in the cliques in the Linkage are 

initialized. For more details about this process, see sections II - 5.4, IV - 2.1 and IV - 2.2. 

II - 5.3.f. Initialize Beliefs 

Before performing inference in a MSBN, an initialization of beliefs in all subnetworks is needed. 

Each subnetwork, as BN that it is, has initial beliefs that do not need to be the same as initial 

beliefs of another neighboring network with shared nodes. To maintain coherence in the MSBN, 

a common initialization of common beliefs is needed, which can be achieved by many different 

algorithms. 

The algorithm of initialization used in our work is the same used in UnBBayes MSBN Framework 

(see II - 5.4). It is that, as is done in Bayesian networks, we need a two-phase initialization: 

COLLECT-EVIDENCE and DISTRIBUTE-EVIDENCE. A simple representation of this process for a 

three-subnetwork MSBN is shown in the collaboration diagram of Figure II-15. The subnetwork 

subnetwork_1 has the role of root subnetwork in this example. 

 

Figure II-15 Belief Initialiazation algorithm. Collaboration Diagram 

 

In MSBN Framework, we obtain different results from initialization depending on which 

subnetwork initiate the loop (the root subnetwork). This is a convention arbitrary chosen. Other 

conventions or techniques of initialization can be chosen, but they are beyond the scope of this 

project. 

II - 5.4. Synchronous architecture for Single-Agent MSBN 

Probabilistic reasoning in BNs, as commonly applied, assumes a single-agent paradigm.  That is, a 

single processor accesses a single global network representation, updates the joint probability 

distribution over the network variables as evidence becomes available and answers queries. 

This architecture is designed to work in a single machine. All of the updates are made directly, by 

changing the properties in the corresponding object. In fact, several subnetworks share the 

same nodes, which are the same object instances. 

In this architecture, the greatest advantage in comparison with a simple BN is the modularity 

offer by the ability of subnetworks to be interchanged or replaced. The modularity improves 

inference efficiency in a single user oriented system in a large problem domain.  

Off-line time 

The communication of beliefs in this architecture is achieved in a synchronous way by means of 

recursive calling to the corresponding methods. That means each subnetwork is waiting while 
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this updating loop is performed. More about distribution of beliefs can be read in section II - 

5.3.f. 

The solution proposed to avoid this behavior can be seen in section IV - 2.2. 

II - 6. Distributed Communication Frameworks 

This project bases its communications in a communication interface, which can be implemented 

by multiple types of communication frameworks. Thus, the results and architectures designed 

are independent form the communication framework used. 

In fact, both distributed architectures designed have different communication requirements. 

 The first architecture, Synchronous one, needs a communication framework that 

supports synchronous operations. That is, a framework that supports Remote Procedure 

Call (RPC). It has been manually implemented by the following means: 

o Direct method calling to emulate communication in an only computer. 

o Socket based communication that allows the calling of methods remotely 

according to the message passed. In addition, some objects can be serialized to 

be sent. 

o Jadex Agent Platform, which implements itself serializing methods for messages. 

 The second architecture, Iterative one, needs a communication framework that supports 

asynchronous message sending. This means that, when a message arrives, a simple 

operation (normally queue the information conveniently) needs to be done. It has been 

achieved using an already developed communication framework: 

o JGroups, which is a reliable group communication toolkit written entirely in Java. 

It is based on IP multicast. 

Although developed architecture is independent from communication framework, there 

are several services provided by JGroups toolkit that are not easily found in other 

communication frameworks, such as: 

 Notification about joined / left /crashed members 

 Point-to-multipoint and Point-to-point messaging 

 State transmission  

II - 6.1. JGroups 

    JGroups is a toolkit for reliable multicast communication. It can be used to create groups of 

processes whose members can send messages to each other. The main features include 

 Group creation and deletion. Group members can be spread across LANs or WANs 

 Joining and leaving of groups 

 Membership detection and notification about joined/left/crashed members 

 Detection and removal of crashed members 
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  Sending and receiving of member-to-group messages (point-to-multipoint) 

  Sending and receiving of member-to-member messages (point-to-point) 

Flexible Protocol Stack and Reliable Communications 

 The most powerful feature of JGroups is its flexible protocol stack, which allows developers to 

adapt it to exactly match their application requirements and network characteristics. Besides 

unicast communications, JGroups extends reliable unicast message transmission (like in TCP) to 

multicast settings. As described above it provides reliability and group membership on top of IP 

Multicast. Since every application has different reliability needs, JGroups provides a flexible 

protocol stack architecture that allows users to put together custom-tailored stacks, ranging 

from unreliable but fast to highly reliable but slower stacks. 

Over implemented protocols, reliable communications are achieved including 

  lossless transmission of a message to all recipients (with retransmission of missing 

messages) 

 fragmentation of large messages into smaller ones and reassembly at the receiver's side 

 ordering of messages, e.g. messages m1 and m2 sent by P will be received by all 

receivers in the same order, and not as m2, m1 (FIFO order) 

 atomicity: a message will be received by all receivers, or none. 

II - 6.2. Hazelcast 

Hazelcast is an open source clustering and highly scalable data distribution platform for Java, 

which is: 

 Lightning-fast; thousands of operations/sec. 

 Fail-safe; no losing data after crashes. 

 Dynamically scales as new servers added. 

 Super-easy to use; include a single jar. 

Hazelcast allows you to easily share and partition your application data across your cluster. 

Hazelcast is a peer-to-peer solution (there is no master node, every node is a peer) so there is no 

single point of failure. 

Hazelcast is simple. JVMs that are running Hazelcast will dynamically cluster. Although by default 

Hazelcast will use multicast for discovery, it can also be configured to only use TCP/IP for 

environments where multicast is not available or preferred. Communication among cluster 

members is always TCP/IP with Java NIO beauty. The only we need to use Hazelcast is just 

adding the hazelcast.jar into our classpath and start coding. 
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III - Analysis 

This chapter discusses the analysis process that has been followed to obtain the system 

requirements. This will show, firstly, the objectives and scope of the project to properly frame the 

work area. 

After presenting the scope of the project, this section shows the use cases and requirements 

arising from these. 

Finally, a brief comparison of the tools presented in section II - is done, showing the reasons why 

the tools we use in this project are chosen. 
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III - 1. Scenario 

The solution resulting from this project can be used in numerous scenarios to be able to deal 

with uncertainty in a distributed way. That is the reason why, in this section we will present a 

general system that can operate reasoning independently of the scenario in which it is situated. 

For a more specific description in a concrete scenario, the case study presented in section VI - 

can be seen. 

III - 2. Use Cases 

This section identifies general use cases of normal use in the system, in order to get a full 

specification of expected usage of the system with the aim of establish a complete list of 

requirements. 

Below, the actors identified within the use cases are presented. Later, by mean of use case 

descriptions and UML diagrams of them, we establish the relationships between the actors and 

the system. 

III - 2.1. Actors 

Here we present the actors identified within the use cases that are shown below. 

Actor Identifier Name Description 

ADM Administrator It is responsible for starting, loading and 
shutdown of each node of this reasoning 
system. Since this is a distributed system, 
there could be several ADM, each of which is 
responsible of a node of this system. 

USR User It is responsible for managing and operating 
of the system. It can introduce new 
information about the state of the system or 
the results of other sources of knowledge, 
listen to changes in the knowledge of this 
reasoning system to be able to produce some 
reactions to these events or make queries or 
request any information about the collected 
knowledge at any time, independently from 
belief updates. 

Table III-1 Actors 
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III - 2.2. Use Case 1: Loading and operation of the MSBN 

III - 2.2.a. Description 

The ADM responsible for the new Hypernode load it from the information received or loaded 

from a file. Then, the USR takes the control of this Hypernode and perform compilation and 

initialization of the Hypernode. The USR is the responsible for the answering of queries about 

the beliefs and the state of the compilation of the Hypernode, as well as carrying out the 

updating of beliefs or sending them to allow the updating of beliefs of other Hypernodes. At any 

moment, ADM can decide to shutdown this Hypernode. 

III - 2.2.b. Use Case Specification 

UC-1 Loading and operation of the MSBN 

Description The system performs the loading of the MSBN and each 
Hypernode operates communicating with others and 
answering to queries. 

Actors ADM, USR 

Normal Sequence Loading of Hypernode 

Compilation of the Hypernode according to the MSBN 

Initialization of the beliefs of the Hypernode according to 
adjacent Hypernodes in the MSBN 

Receive petitions of belief updating 

Update beliefs 

Receive queries about beliefs 

Receive queries about compilation state 

Shutdown this Hypernode 

Exceptions Steps from 4 to 7 can be done in different order or even 
omitted according to USR needs. 

Table III-2 UC-1 Specification 
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III - 2.2.c. Use Case Diagram 

 

Figure III-1 Use Case Diagram for UC-1 

 

 

 

 

 

III - 2.3. Use Case 2: Adaptation of the system 

III - 2.3.a. Description 

An ADM can decide load a new Hypernode or shutdown an existing one at any time, as we saw 

in UC-1. Thus, the ADMs that are responsible for all other Hypernodes have to adapt the 

configuration of the MSBN to changes occurred. That is, to adapt the MSBN to a fallen 

Hypernode, to adapt the MSBN to an appeared Hypernode or to adapt two previously existing 

MSBN to be joined into an only MSBN. Only in the case that a Hypernode is isolated, the URS is 

the responsible for the adaptation of this Hypernode to the situation. 
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III - 2.3.b. Use Case Specification 

UC-1 Adaptation of the system 

Description During the whole time the system is running, many events can 
happen such as the appearing or disappearing of a Hypernode. 
Since the structure of the MSBN can be affected, adaptation 
needs to be done by each Hypernode. 

Each ADM is responsible for the adaptation to the falling or the 
appearing of a Hypernode, as well as to the joint of two MSBNs 
into an only MSBN if it becomes possible. On the other hand, 
USR is responsible for the adaptation of the Hypernode to an 
isolated situation. 

Actors ADM, USR 

Normal Sequence Adaptation to a fallen node 

Adaptation to an appeared node 

Adaptation to an isolated node 

Adaptation to the joint of two MSBNs into an only MSBN 

Exceptions The order is not relevant in this use case. 

Table III-3 UC-2 Specification 

 

 

III - 2.3.c. Use Case Diagram 

 

Figure III-2 Use Case Diagram for UC-2 
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III - 3. Requirements 

This section presents the requirements of the system obtained through the use cases presented 

and the global scenario. 

Each requirement is presented in a table, which contains: 

 Identifier. An unique Identifier for the requirement. It is expressed in the format: 

o FR-n: Functional requirement number ‘n’. 

o NFR-n: Non-functional requirement number ‘n’. 

 Title. A short name for the requirement. 

 Description. A detailed specification of the features that the system should satisfy. 

 Priority. Degree of need for meet this requirement. Its value can be one of the following: 

o Essential. It is mandatory for the correct functioning of the system. 

o High. It could be satisfied partially, but it is highly recommended. 

o Medium. Optional requirement, which could improve the quality of the system. 

o Low. Minor requirement which, if met, would add little improvements to the 

system that may be undetectable by the user. 

 Related use cases. Specifies those use cases that, after an detailed analysis, have result 

on this requirement. 

 Related requirements. Shows those requirements with which this requirement is 

related. 

III - 3.1. Functional Requirements 

 

FR-1 Load a MSBN Hypernode 

Description The system should be capable of perform the loading of all 
Hypernodes of the MSBN. It can be achieved from different ways, 
such as load from files, load from received messages or load from 
the ontology of an agent. 

Priority Essential 

Related use cases UC-1 

Related requirements FR-4, FR-6 

Table III-4 Load a MSBN Hypernode 

 

FR-2 Compile a MSBN Hypernode 

Description Each Hypernode should be capable of perform compilation. 

Priority Essential 

Related use cases UC-1 

Related requirements FR-5, FR-12 

Table III-5 Compile a MSBN Hypernode 
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FR-3 Sending information 

Description Each Hypernode should be capable of send all information 
required for other Hypernodes to compile. It should be capable of 
select only those destination Hypernode that need the information. 

Priority Essential 

Related use cases UC-1 

Related requirements FR-4, NFR-1, NFR-3 

Table III-6 Sending information 

 

FR-4 Receiving messages 

Description Each Hypernode should be capable of use properly information 
received from other Hypernodes.  

Priority Essential 

Related use cases UC-1 

Related requirements FR-3, NFR-3 

Table III-7 Receiving messages 

 

FR-5 Recompilation of a Hypernode 

Description After the reception of several types of messages, each Hypernode 
should be capable of return to a lower step of the compilation. This 
should be done without losing data or affecting the normal 
operation of the system. 

Priority High 

Related use cases UC-1 

Related requirements FR-2, FR-8, FR-9, FR-10, FR-11 

Table III-8 Recompilation of a Hypernode 

 

FR-6 Stopping a Hypernode 

Description Each Hypernode should be capable of stop its operation. This 
action can be launched by the same Hypernode or by an external 
agent. 

Priority Medium 

Related use cases UC-1 

Related requirements FR-1 

Table III-9 Stopping a Hypernode 
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FR-7 Verifying the non-existence of cycles 

Description The system should be capable of verify if there are any cycles in 
the global BN, throwing an exception in that case. In addition, it 
should inform of the correction of the graph before compilation 
finishes. 

Priority Low 

Related use cases UC-1, UC-2 

Related requirements  

Table III-10 Verifying the non-existence of cycles 

 

FR-8 Adaptation to an isolated Hypernode 

Description An isolated Hypernode should be capable of reson using all 
information it has. 

Priority Low 

Related use cases UC-2 

Related requirements FR-5, NFR-10 

Table III-11 Adaptation to an isolated Hypernode 

 

FR-9 Adaptation to an appeared Hypernode 

Description After the apparition of a new Hypernode, all Hypernodes in the 
MSBN should adapt their structures to the new situation. 

Priority Essential 

Related use cases UC-2 

Related requirements FR-2, NFR-10 

Table III-12 Adaptation to an appeared Hypernode 

 

FR-10 Adaptation to a fallen Hypernode 

Description Afther the fallen of an already existing Hypernode, all Hypernodes 
in the MSBN should adapt their structures to the new situation. 

Priority High 

Related use cases UC-2 

Related requirements FR-5, NFR-10 

Table III-13 Adaptation to a fallen Hypernode 
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FR-11 Adaptation to the join of two MSBNs 

Description When the MSBN has been split into several MSBN, after the 
apartion of the joining Hypernode, the MSBNs should be capable of 
merge into one again. 

Priority Medium 

Related use cases UC-2 

Related requirements FR-5, FR-12, NFR-10 

Table III-14 Adaptation to the join of two MSBNs 

 

FR-12 Split an MSBN 

Description When some existing Hypernodes in an MSBN cannot be connected, 
the system should be capable of operate as if there were several 
separated MSBNs. 

Priority Medium 

Related use cases UC-2 

Related requirements FR-5, FR-11, NFR-10 

Table III-15 Split an MSBN 

 

III - 3.2. Non-Functional Requirements 

 

NFR-1 Coherence and consistency 

Description The system should be capable of maintain coherence and 
consistency during the whole reasoning process. In the case of 
Iterative architecture, the requirement of concistency is temporary 
lower. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements FR-3 

Table III-16 Coherence and consistency 

 

NFR-2 Handle uncertainty 

Description The system should be capable of handle uncertainty inherent in all 
complex environments. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements  

Table III-17 Handle uncertainty 
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NFR-3 Tolerant to communication failures 

Description The system should be capable of be tolerant to communication 
failures. This can be done by the using of a framework that provide 
this feature. 

Priority High 

Related use cases UC-1, UC-2 

Related requirements FR-3, FR-4, NFR-9 

Table III-18 Tolerant to communication failures 

 

NFR-4 Incomplete data reasoning 

Description The system should be capable of offering a coherent result even 
with incomplete data set. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements  

Table III-19 Incomplete data reasoning 

 

NFR-5 Scalability 

Description The system should be scalable enough to be useful in a real 
scenario with a high quantity of nodes. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements NFR-6 

Table III-20 Scalability 

 

NFR-6 Privacy 

Description The system should be capable of keep private data in Hypernodes 
sharing only public information. This is also important for the 
scalability of the system. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements NFR-5 

Table III-21 Privacy 
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NFR-7 Autonomy 

Description The system should be autonomous. Each Hypernode should be an 
independent unit capable of reason itself. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements NFR-8 

Table III-22 Autonomy 

 

NFR-8 Distributed and decentralized 

Description The system should have a set of Hypernodes that are all equal. 
Operations are distributed across different parts of the systems. 

Priority High 

Related use cases UC-1, UC-2 

Related requirements NFR-7 

Table III-23 Distributed and decentralized 

 

NFR-9 Asynchronous communications 

Description The system should have asynchronous communications. A 
message should be attended at any time. 

Priority High 

Related use cases UC-1, UC-2 

Related requirements NFR-3 

Table III-24 Asynchronous communications 

 

NFR-10 Adaptability 

Description The system should adapt to each scenario and situation. 
Hypernodes should be capable of adapt the structure of the MSBN 
(Hypertree)  to each situation. 

Priority High 

Related use cases UC-1, UC-2 

Related requirements FR-8, FR-9, FR-10, FR-11, FR-12, NFR-11 

Table III-25 Adaptability 
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NFR-11 Stability 

Description The system should be stable enough to be useful when reasoning 
in a real scenario. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements NFR-10 

Table III-26 Stability 

 

NFR-12 Portability 

Description The system should be portable to allow its use in all those devices 
that form a FTTH network. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements  

Table III-27 Portability 

 

NFR-13 Maintainability 

Description The system should be maintainable to allow future work and 
modifications over the developed framework. 

Priority Essential 

Related use cases UC-1, UC-2 

Related requirements  

Table III-28 Maintainability 
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III - 3.3. Requirements Summary 

In this section, a summarizing table (Table III-29) with requirements and priorities is shown. 

Id Title Priority 

FR-1 Load a MSBN Hypernode Essential 

FR-2 Compile a MSBN Hypernode Essential 

FR-3 Sending information Essential 

FR-4 Receiving messages Essential 

FR-5 Recompilation of a Hypernode High 

FR-6 Stopping a Hypernode Medium 

FR-7 Verifying the non-existence of cycles Low 

FR-8 Adaptation to an isolated Hypernode Low 

FR-9 Adaptation to an appeared Hypernode Essential 

FR-10 Adaptation to a fallen Hypernode High 

FR-11 Adaptation to the joing of two MSBNs Medium 

FR-12 Split an MSBN Medium 

NFR-1 Coherence and consistency Essential 

NFR-2 Handle uncertainty Essential 

NFR-3 Tolerant to communication failures High 

NFR-4 Incomplete data reasoning Essential 

NFR-5 Scalability Essential 

NFR-6 Privacy Essential 

NFR-7 Autonomy Essential 

NFR-8 Distributed and decentralized High 

NFR-9 Asynchronous communications High 

NFR-10 Adaptability High 

NFR-11 Scalability Essential 

NFR-12 Portability Essential 

NFR-13 Maintainability Essential 

Table III-29 Requirements summary 
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III - 4. Tools comparison 

III - 4.1. Reasoning Techniques Comparison 

III - 4.1.a. Comparison of reasoning techniques 

In this section, we analyze data shown in II - 2. As we have seen, each technique presents its 

strengths and its weaknesses. To solve the problem stated in section VI - and satisfy 

requirements showed in section III - 3, we sum up the requirements as follows. We want to find 

one reasoning technique that allows us to reason with the following requirements: 

1. To maintain coherence and consistency in the reasoning using a distributed approach. 

2. To handle uncertainty inherent in all complex environments. 

3. To be tolerant with communications failures. 

4. To keep private data in local nodes sharing only public information. 

5. To offer a coherent result even with uncompleted data set. 

In Table III-30, a comparison between most relevant reasoning techniques with a distributed 

approach about this features is shown[4]. As result of this comparative table, we can deduce 

that Bayesian inference is the technique that meets better the requirements listed above. 

Reasoning Technique Rule systems CBR FuzzyLogic Bayesian 
inference 

Coherence/Consistency Good Good Bad Good 

Handle uncertainty Null Null Good Good 

Failures tolerance Medium Bad Medium Medium 

Maintain private data Good Medium Good Medium 

Uncompleted data set Bad Good Medium Good 

Table III-30 Reasoning techniques comparison 

As we see in Table III-30 the best choice is Bayesian Inference. Bayesian reasoning allows 

handling uncertainty while maintaining coherence and consistency. 

Bayesian reasoning is not itself a failure tolerant technique. Thus, architecture used should be 

responsible for failure handling and recovering techniques. 

Bayesian reasoning can maintain data as private if we implement an architecture that allows it. It 

is not a characteristic of the system, but can easily be achieved. Reasoning when the data set is 

incomplete is allowed by several techniques. 

As we see, Bayesian reasoning is the technique that had better satisfy requirements stated. In 

consequence, we base this whole project on this reasoning technique. 

Another option would be Fuzzy Logic, due to handling uncertainty is our main requirement. In 

the following section, we carry out a comparison between both techniques to clarify why this 

decision has been made. 



Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks 

59 

 

III - 4.1.b. Comparison: Fuzzy Logic vs. Bayesian Reasoning 

When dealing with uncertainty, there are several options to build computational models. We 

have chosen two of them, which we consider the most relevant ones. Concretely we would like 

to compare two of these models: Bayesian Networks and Rule-Based Expert Systems with 

uncertainty factors. In our work, we have developed over Bayesian Network model. That is why 

we would like to show if a Rule-Based Expert System implementation would be viable. 

As platforms to implement those models, in this comparison, we choose Genie & Smile as a 

Bayesian Network Inference Engine due to its beautiful and easy graphic interface and Fuzzy-

Clips as a Rule-Based Expert System with uncertainty factors, due to it is easy-to-use. 

In the case study presented in section VI - we have developed several Bayesian Networks that 

work and solve mainly the problem. 

Now, we would like to see if an implementation of this system by using a Rule–Based Expert 

System. To make a comparison, we have implemented a little part of this Bayesian Network in a 

FuzzyClips code. This Bayesian Network is shown in Figure III-3. 

 

III-3 Bayesian Network for the comparison between Fuzzy clips and Bayesian networks 

This is only a part of a bigger Bayesian Network, and only a part of the network showed will be 

develop in FuzzyClips code. Only the nodes with two states will be included in our code because, 

as we see below, the work needed to implement nodes with more states grows exponentially. 

For each node’s parent possible state, we have to add a FuzzyClips rule. Then, when asserting 

facts, inference will be performed. 

The developed FuzzyClips code is showed below (Code III-1). Resulting facts from the inference 

for the facts inserted at the end of the code, are shown in Code III-2. Finally, the equivalent 

resulting Bayesian Network after perform inference with the same evidence (fact) is shown in 

Figure III-4. 
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Code III-1 Fuzzy Clips vs Bayesian Networks comparison 

FuzzyClips code 

 

;------------------------------------------------------------- 

; ProviderHANCluster.clp 

; Model for Magneto Network 

; Created by Jesús López Méndez 

; 10-Mar-2011 

;------------------------------------------------------------- 

 

(defrule InternalProviderConnectivityFailureYY 

 (ProviderHANProblem yes) 

 (OVNManagementBadlyConfigured yes) 

=> 

 (assert (InternalProviderConnectivityFailure yes) CF 0.6) 

) 

 

(defrule InternalProviderConnectivityFailureYN 

 (ProviderHANProblem yes) 

 (OVNManagementBadlyConfigured no) 

=> 

 (assert (InternalProviderConnectivityFailure yes) CF 0.3) 

) 

 

(defrule InternalProviderConnectivityFailureNY 

 (ProviderHANProblem no) 

 (OVNManagementBadlyConfigured yes) 

=> 

 (assert (InternalProviderConnectivityFailure yes) CF 0.45) 

) 

 

(defrule InternalProviderConnectivityFailureNN 

 (ProviderHANProblem no) 

 (OVNManagementBadlyConfigured no) 

=> 

 (assert (InternalProviderConnectivityFailure yes) CF 0.01) 

) 

 

;------------------------------------------------------------- 

 

(defrule OVNManagementBadlyConfiguredY 

 (ProviderHANProblem yes) 

=> 

 (assert (OVNManagementBadlyConfigured yes) CF 0.4) 

) 

 

(defrule OVNManagementBadlyConfiguredN 

 (ProviderHANProblem no) 

=> 

 (assert (OVNManagementBadlyConfigured yes) CF 0.3) 

) 

 

;------------------------------------------------------------- 
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(defrule ServiceMalfunctionY 

 (ProviderHANProblem yes) 

=> 

 (assert (ServiceMalfunction yes) CF 0.1) 

) 

 

(defrule ServiceMalfunctionN 

 (ProviderHANProblem no) 

=> 

 (assert (ServiceMalfunction yes) CF 0.01) 

) 

 

;------------------------------------------------------------- 

 

(defrule ServiceProviderDeviceDownOrDisconnectedYY 

 (ProviderHANProblem yes) 

 (OVNManagementBadlyConfigured yes) 

=> 

 (assert (ServiceProviderDeviceDownOrDisconnected yes) CF 0.4) 

) 

 

(defrule ServiceProviderDeviceDownOrDisconnectedYN 

 (ProviderHANProblem yes) 

 (OVNManagementBadlyConfigured no) 

=> 

 (assert (ServiceProviderDeviceDownOrDisconnected yes) CF 0.2) 

) 

 

(defrule ServiceProviderDeviceDownOrDisconnectedNY 

 (ProviderHANProblem no) 

 (OVNManagementBadlyConfigured yes) 

=> 

 (assert (ServiceProviderDeviceDownOrDisconnected yes) CF 0.3) 

) 

 

(defrule ServiceProviderDeviceDownOrDisconnectedNN 

 (ProviderHANProblem no) 

 (OVNManagementBadlyConfigured no) 

=> 

 (assert (ServiceProviderDeviceDownOrDisconnected yes) CF 0.01) 

) 

 

;------------------------------------------------------------- 

 

(defrule ProviderHANCongestionY 

 (ProviderHANProblem yes) 

=> 

 (assert (ProviderHANCongestion yes) CF 0.05) 

) 

 

(defrule ProviderHANCongestionN 

 (ProviderHANProblem no) 
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=> 

 (assert (ProviderHANCongestion yes) CF 0.01) 

) 

 

 

;------------------------------------------------------------- 

; FACT ASSERTION 

;------------------------------------------------------------- 

(deffacts UserEvidences 

 (ProviderHANProblem yes) CF 1.0 

) 

 

 

 

Code III-2 Fuzzy Clips vs Bayesian Networks comparison results 

Result of execution 

 

;------------------------------------------------------------- 

f-0    (initial-fact) CF 1.00  

f-1    (ProviderHANProblem yes) CF 1.00  

f-2    (OVNManagementBadlyConfigured yes) CF 0.40  

f-3    (InternalProviderConnectivityFailure yes) CF 0.24  

f-4    (ServiceProviderDeviceDownOrDisconnected yes) CF 0.16  

f-5    (ServiceMalfunction yes) CF 0.10  

f-6    (ProviderHANCongestion yes) CF 0.05 

;------------------------------------------------------------- 

 

 

III-4 Bayesian Network for the comparison between Fuzzy clips and Bayesian networks. Inference results with an 
evidence introduced 
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Result Analysis: Complexity Degree 

As we can infer from the code, the complexity of a node codification is as follow. 

Let node A be a node in the Bayesian Network representation, and let         be the parent of 

node  . Then, a parent    has the states         
. For each possible parent state, we have to 

add a rule to our Rule-Based System. Thus, the necessary number of rules for node   to define a 

similar behavior than in the Bayesian Network is as showed in Equation Eq. III-1. 

                             

 

 

 Eq. III-1 

This means that the number of rules needed to perform a node behavior grows exponentially 

with the number of its parent states. Thus, implementation of systems with moderate amounts 

of states per node could be viable. When the number of states per node grows a little, 

implementation of Rule-Based systems with uncertainty factors turns difficult and, practically, 

non-viable. On the other hand, Bayesian Network representation makes our job easier. Graphic 

interfaces allow build the system by a more intuitive way and have a clear view of system 

performance. Bayesian Networks are more understandable for humans and more easily 

developed, implemented and modified. 

Result Analysis: Differences between both models 

According to the results obtained in Code III-2 and in Figure III-4, some differences between both 

systems performance can be observed. When implementing inference between nodes directly 

related to the evidence node, no differences are shown. However, when there is a node 

between evidence and destination nodes, the results vary depending on what method. This is 

not an error. Simply, methods are based on different theories. 

Bayesian Networks, as described in section II - 2.4, are based on Bayes theory. That means that 

the probabilities are computed according to conditional probability tables of the nodes. 

Therefore, results do not show as much the uncertainty of the information obtained but the best 

information we can obtain with the provided evidences. 

Contrary to BN model, FuzzyClips inference engine use products to calculate the level of 

uncertainty. Accordingly, the degree of uncertainty will be increasing increasingly as we move 

away from the evidence node. 

FuzzyClips describe facts and rules reality level by means of Certainty Factors (CF). Certainty 

Factor of a fact which is inferred (it is not an evidence) will be calculated as the product of the CF 

of the rule multiplying by the CF of each fact on which this rule depends. 

Certainty Factors of FuzzyClips model both the uncertainty and the imprecision of facts and rules 

applied. In our case, we have not used uncertain / imprecise rules because we are completely 

sure about the relations between nodes. In fact, relations between nodes are completely 

precise, so the only information we have to add is their uncertainty degree. 

Let us understand this better through several examples showed in the results. 
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Firstly, ProviderHANCongestion node shows the same numbers in both models. That is because 

there is not any node between this node and evidence node. In the Bayesian Network, the 

conditional probability presents linking this node and evidence node is 

                                                  . Similarly, in the FuzzyClips 

model, the CF of the fact asserted by corresponding rule is also      and the CF of the previous 

fact (the evidence) is    , so the result is the product                                

        . As we see, when there is not any node between a node and the evidence node, 

obtained values are the same. 

Nevertheless, InternalProviderConnectivityFailure node does not show the same results in both 

models. In the Bayesian Network, Bayes theorem will be applied, resulting a      probability. 

However, inf FuzzyClips model the CF of the fact asserted by corresponding rule is 0:6 and the CF 

of the previous facts are     for the evidence node and     for the 

OVNManagementBadlyConfigured node, resulting 

                                                           . Thus, we see that 

when the distance from evidence node to a node is more than one, then the CF decrease a lot 

due to the lack of certainty. 

About different choices shown above, we cannot simply state our preference about one of 

them. Each one has its strengths and its weaknesses. Bayesian Networks have many advantages, 

such as they are easy to build and intuitive. Bayesian Networks have a very efficient computation 

thanks to algorithms, which are improving more and more. In addition, they are easily 

distributable, what is the issue of our project. Rule–Based expert systems with uncertainty 

factors and, concretely, FuzzyClips, have many advantages such as they are more customizable 

and adaptable to our needs. We can make it more intelligent and more helpful. However, they 

have a more difficult implementation and modification, as well as they are hardly distributable. 

III - 4.1.c. Our choice: Bayesian Reasoning 

We have chosen Bayesian Networks as the reasoning technique for this project due to several 

reasons. Bayesian Networks have many advantages, such as they are easy to build and intuitive. 

In addition, Bayesian Networks have a very efficient computation thanks to algorithms, which 

are improving more and more. Moreover, they are easily distributable, what is the issue of our 

project. Other reasoning techniques shown in section II - 2 have advantages such as they are 

more customizable and adaptable to our human reasoning. However, they have a more difficult 

implementation and modification, as well as they are hardly distributable. On the other hand, 

Bayesian Networks are easily distributable and very adequate to incomplete knowledge, dealing 

easily with uncertainty. 

III - 4.2. Distributed Reasoning: MSBN, our choice 

Among the distributed reasoning techniques presented in II - 2, there are two which are more 

adequate to our problem. 

DPNs are relatively simple to be implemented. The connections among different agents can be 

established at run time (self-configuration). It does not need prior compilation and 

communications are established only when necessary, thus it has high efficiency for one query 

variable at one time of a network with simple structure. However, DPNs has three strict 
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requirements for its structures as listed before, therefore, it is only suitable for some special 

applications. 

In order to represent cooperative multi-agents who must reason with uncertain knowledge, a 

coherent framework is necessary. We choose multiply sectioned Bayesian networks (MSBNs) as 

the basis for this project because they are based on well-established theory on Bayesian 

networks and because they are modular. 

A MSBN consists of a set of interrelated Bayesian subnetworks each of which encodes certain 

knowledge on a subdomain. Bayesian subnetworks are organized into a Hypertree structure 

such that inference can be performed in a distributed fashion while answers to queries are exact 

with respect to probability theory. 

Each subnetwork only exchanges information with adjacent subnetworks on the Hypertree, and 

each pair of adjacent subnetworks only exchanges information on a set of shared variables. That 

is the great advantage of this organization: the complexity of communication among all agents is 

linear on the number of agents and the complexity of local inference is the same as if the subnet 

is a single agent based BN. 

MSBN organization offer a simple communication model that let the system be scalable as well 

as reliable [20]. 

III - 4.3. BN Inference Frameworks: UnBBayes, our choice 

Each one of the Inference Engines showed in section II - 4.5 has its own different characteristics. 

Hence, there is no a preferred Inference Engine. Each one has its own strengths and weaknesses. 

We prefer the graphical interface of Genie, the versatility of SamIam and the readability of 

UnBBayes. Netica is not even an option for our project due to its commercial and we do not like 

to pay for it. In addition, file formats are not compatible among different inference engines as it 

is been shown in section II - 4.5.g. Hence, although conversion between different file formats is 

not too difficult, we have to make a choice. 

To clarify this point, the most relevant characteristics of each Inference Engine are shown in 

table Table III-31. 

Inference 
Engine 

Variety of 
Inference 

Algorithms 

Programming 
language 

Maintenance Data Formats License 

SamIam High Java 
(not totally) 

High .net (full supported), 
.dsl, .xdsl, .dsc, .dne, 

.erg 

Free 

UnBBayes Low Java High .net, .xml (XMLBIF) Open 
Source 

Genie & 
Smile 

High C++ 
(Wrapper Java) 

High .xdsl, .dsl, .erg, .dne, 
.dsc, .net, .dxp 

Free 

Netica High C++ High .dne, .neta, .net, .dxp, 
.dsc, .ergo 

Commerc
ial 

Table III-31 Inference engines comparison 
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First, as we mentioned below, Netica is not an option for us due to it has commercial license 

only.  

On one hand, Genie and SamIam have clearly the most attractive and usable graphic interfaces. 

They are easy to use as well as intuitive and simple.  

On the other hand, despite UnBBayes has not a very usable graphic interface, it has a feature 

that make it the choice: It is Open Source. 

As we need to develop new source and reuse some code already present in the inference 

engine, our work becomes very simpler if we can have the original code. UnBBayes only 

implements Hugin algorithm and this has not been optimized too much. It only can use .net 

format and a proprietary format known as XMLBIF that is not used for any other inference 

engine. However, the availability of its source code and the fact that it is programmed 

completely in java language, make it the optimal choice for this project. 

According to the analysis done, UnBBayes is chosen as the Inference Engine for our project. 

III - 4.4. Distributed Communication Frameworks: JGroups, 

our choice 

Among the set of tools studied in section II - 6 we value JGroups as the best choice. While 

Hazelcast is a framework for sharing memory, JGroups is a framework for message passing. 

Hazelcast has been developed to share data among servers or cache data to achieve faster 

response times while trying to avoid single point of failures. It has a good response to dynamic 

events, as node crashes but those events are transparent for user. Thus, the treatment and 

reaction to fails and crashes is more difficult and communication between nodes in the MSBN is 

not the preferred for this distributed reasoning technique. 

Consequently, JGroups is chosen as the communication framework of this project since it offer 

great advantages such as easy managing of all active members, reliable communication between 

them, detection and notification about joined / left / crashed members or point-to-multipoint 

and point-to-point communications. 
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IV - Architecture and Design 

In this chapter, a detailed description of the whole developed system is shown. Concretely, it is 

separated in two different sections, one for each developed architecture. 

The first presented architecture is the synchronous one, which is an adaptation of the 

architecture presented in section II - 5.4 to make it available to the use in multi-agent systems. 

The second presented architecture is the iterative one. This is the most important part of this 

project. It allows the use of this in multi-agent systems, as well as allows the reliability and 

robustness to crashes or errors. 
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IV - 1. System parts 

This distributed reasoning framework consists of Hypernodes, which are the only units that 

compose it. 

Each Hypernode is completely independent of other Hypernodes. This is the great advantage of 

this architecture: each Hypernode can be created or stopped without affect the correct 

functioning of the whole MSBN. 

A Hypernode has a number of private nodes and other that are public. Public nodes are those 

that are shared with other Hypernodes, and are used as communication channel between 

several Hypernodes. 

Hypernodes are connected through Linkages. In turn, Linkages are formed of Links, which are 

the basic unit, linking pairs of cliques. For more details about this architecture, a more detailed 

description is given in section II - 4.3. 

IV - 2. Developed MSBN Architectures 

The MSBN architecture studied in II - 5.3 is implemented to allow reasoning with uncertainty in a 

synchronous Single-Agent System. This departing architecture is known as Single-Agent MSBN 

with synchronous communications. This means that the system will run over an only agent that 

will contain the entire MSBN. In addition, we have to highlight that this architecture use 

synchronous communications. That is to say, processes are performed at the same time in the 

different subnetworks of the MSBN, what can result in useless waiting times. 

The single-agent paradigm is inadequate when uncertain reasoning is performed by elements of 

a system between which there is some “distance”, which may be spatial, temporal or semantic. 

Such systems pose special issues that need to be addressed. A multi-agent view is thus required 

where each subnetwork part is an autonomous intelligent subsystem.  

Although each subnetwork does not necessarily have to belong to an agent, and could be used 

by any program, in this project we will focus on agent paradigm to do the explanation easier. 

Assuming a multi-agent paradigm, each agent holds its own partial domain knowledge, accesses 

some external information source and consumes some computational resource. Each agent 

communicates with other agents to achieve the system’s goal cooperatively. MSBNs provide a 

simple way of communication between agents to share only those beliefs that are public and 

only with those agents that require them. In addition, MSBN is a precise way that allows dealing 

with the lack of information. 

In our work, we start from the study of the already developed synchronous Single-Agent 

architecture to develop other architectures more appropriate to our problem. We have 

developed and implemented two different architectures to allow the use of MSBNs in Multi-

Agent Systems (MASs): synchronous architecture and iterative architecture. 

As synchronous SAS architecture does, synchronous MAS architecture uses a synchronous and 

centralized architecture. Although the selection of the root/coordinator node can be done 

arbitrarily, all processes in the compilation of the BN and in the communication of beliefs in the 

BN are done synchronously. This is achieved by mean of recursive calling to the corresponding 



Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks 

69 

 

methods in the different subnetworks. Since all methods are called recursively, while processes 

are performed in each subnetwork, all other subnetworks are in active waiting. 

To extend single-agent MSBNs into MAS, many issues need to be resolved. First steps involve the 

coherent agent communication[21], the optimization of communication scheduling[22] and the 

distributed structure verification[23]. 

IV - 2.1. Synchronous Architecture for Multi-Agent MSBN 

IV - 2.1.a. Introduction 

Notation used in this section 

As a link before this report and the programmed code, this section use some notation that 

correspond to programmatic language. The conventions used are: 

 Names of objects are shown corresponding to programmed ones. That is, to refer to a 

link that belongs to a Linkage that is in the list of this subnetwork named links, we will 

use the notation subnetwork.links.linkage.linkList.link. The explanation of this notation 

is, since the subnetwork has a list of Linkages called links, a linkage is trivially called 

linkage, each Linkage has a list of Links called linkList, and each Link in this list is trivially 

called link. 

 Objects used to extract some information at a determinate step or process are enclosed 

between curly brackets {}. For example, if in a determinate step we use the Links of a 

Linkage to know the shared nodes, after the description of this step {linkage.linkList.link} 

will be written. 

 Objects modified during a determinate step or process are enclosed between square 

brackets []. For example, if in a determinate step we modify a property of a Link of a 

Linkage, after the description of this step [linkage.linkList.link.property] will be written. 

 The interface methods used for communication between subnetworks are written in a 

gray color. 

Communication Framework 

The architecture needs a communication framework that supports synchronous operations. That 

is, a framework that supports Remote Procedure Call (RPC). It has been manually implemented 

by the following means: 

 Direct method calling to emulate communication in an only computer. 

 Socket based communication that allows the calling of methods remotely according to 

the message passed. In addition, some objects can be serialized to be sent. 

 Jadex Agent Platform, which implements itself serializing methods for messages. 
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Class Diagram 

To describe the developed architecture, the class diagram shown in Figure IV-1 is proposed. 

There the relationships between the more important classes belonging to the developed 

architecture can be seen. Those classes that belong to the core of UnBBayes, such as Node, 

Network or Edge, are not shown in this diagram due to they have not been written by us. 

 

Figure IV-1 Class diagram for Synchronous architecture 
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State Diagram 

In synchronous architecture, compilation is not able to go back at any time. Thus, the whole 

process need to be repeated each time there are any structure change in the MSBN. These 

characteristics can be observed in the state diagram shown in Figure IV-2. 

 

Figure IV-2 State diagram for Synchronous architecture 



Architecture and Design 

72 

 

IV - 2.1.b. Detailed Description 

In this section, we give a high detailed description of the basic operations performed along the 

states given above. For that purpose, we use the notation conventions given in section IV - 2.1.a. 

IV - 2.1.b.1. Compilation 

From ANY_STATE to INITIAL_STATE 

 This compilation state is only used for indicate that no state has been set yet. 

From INITIAL_STATE to INITIAL_RESET_STATE 

 Clear Linkages, Adjacents and parent. [linkages, adjacents, parent] 

 Verify Consistency 

From INITIAL_RESET_STATE to HYPERTREE_DONE_STATE 

 Find intersection this and the other subnetworks. 

getSubNetworkWithNode 

getSubNetworkPublicPart(requiredState=INITIAL_RESET) 

 Choose one subnetwork as an adjacent. 

 Ask him to put this subnetwork as parent. 

setAsParent [parent of the subnetwork] 

 Put subnetwork chosen as adjacent of this subnetwork. [adjacent] 

 Add a linkage between this and its adjacent subnetwork. This subnetwork is the owner 

of this linkage. [linkages] 

From HYPERTREE_DONE_STATE to MORALIZATION_INITIALIZED_STATE 

 Verify Cycles (in the whole MSBN). 

sendVerifyCycles 

sendResetVerificationOfCycles 

 Local Moralization. Add fill-ins needed to arcosMarkov. [arcosMarkov] 

From MORALIZATION_INITIALIZED_STATE to MORALIZATION_DONE_STATE 

 For each adjacent: 

o Ask to perform local moralization. [ArcosMarkov] 

getSubNetworkPublicPartWithId(requiredState=MORALIZATION_INITIALIZED) 

 For each adjacent: 

o Distribute arcosMarkov of this subnetwork. 

sendAddMarkovArcs 

o Ask to perform complete moralization and return arcosMarkov. [ArcosMarkov] 

getSubNetworkPublicPartWithId(requiredState=MORALIZATION_DONE) 

 For the parent (if exists): 

o Distribute arcosMarkov of this subnetwork. [arcosMarkov of the parent] 

sendAddMarkovArcs 
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From MORALIZATION_DONE_STATE to TRIANGULATION_INITIALIZED_STATE 

 Make a copy of nodeList of this subnetwork in its copiaNos. [copiaNos] 

 Clear the elimination order list (oe) of this subnetwork. [oe] 

From TRIANGULATION_INITIALIZED_STATE to TRIANGULATION_DONE_STATE 

 Eliminate Depth (caller=null): 

o For each adjacent: [adjacent] 

 Update this adjacent 

getSubNetworkPublicPartWithId(requiredState=TRIANGULATION_INITIA

LIZED) 

 If(minimumWeightTriangulation(adj))  

 Distribute the arcs added during triangulation of this 

subnetwork.  

distributeMyArcsTo(destination=adjacent) 

 For each adjacent different than caller: 

 Ask to Eliminate Depth:  

sendEliminateDepth(caller=thisSubnetwork) 

 If(adjacent has parent) 

 If(minimumWeightTriangulation(parent)) 

o Distribute the arcs added during triangulation of this 

subnetwork. 

distributeMyArcsTo(destination=parent) 

 For each adjacent: 

o Update this adjacent 

GetSubNetworkPublicPartWithId(requiredState=TRIANGULATION_INITIALIZED) 

o Distribute the arcs added during triangulation of this subnetwork. 

distributeMyArcsTo(destination=adjacent) 

o Ask to perform Triangulation and return arcs [arcs] 

getSubNetworkPublicPart(requiredState=TRIANGULATION_DONE) 

 If(this subnetwork has parent) 

o Ask to init triangulation. 

getSubNetworkPublicPart(requiredState=TRIANGULATION_INITIALIZED) 

o Distribute the arcs (added during triangulation of this subnetwork. 

distributeMyArcsTo(destination=parent) 

From TRIANGULATION_DONE_STATE to JUNCTION_TREE_COMPILED_STATE 

 Reset the evidences in each node of the subnetwork. [node.evidence] 

 Put a new Junction Tree as jt of this subnetwork. It has separator and clique lists empty.  

[jt] 

 Add all possible cliques of this subnetwork to jt.cliques. [jt.cliques] 

 Associate an index to each clique in jt.cliques and sort jt.cliques according to this index. 

[jt.clique.index, jt.cliques (order)] 

 Sort nodes in cliques and separators according to the elimination order. [jt.clique.nos 

(order)] 
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 For each node in this subnetwork: 

o Add to each jt.clique tables (potentialTable and utilityTable) as many variables as 

nodes in this clique. {jt.clique.node} [jt.clique.potentialTable, 

jt.clique.utilityTable] 

o Add to each jt.separator tables (potentialTable and utilityTable) as many 

variables as nodes in the clique. {jt.separator.node} [jt.separator.potentialTable, 

jt.separator.utilityTable] 

o For each node in the subnetwork, add this node to the appropriate list of the 

jt.clique which has the minimum size potentialTable. This appropriate list is 

nosAssociados in the case of this node is a ProbabilisticNode or 

associatedUtilNodes otherwise. {nodeList.node}[jt.clique.nosAssociados, 

jt.clique.associateUtilNodes] 

 Init the beliefs of the jt: 

o If the beliefs of the jt haven’t been initialized yet: 

 For each clique in jt: 

 Set potentialTable values to 1. [jt.clique.potentialTable] 

 Multiply the potentialTable by each nosAssociados.node 

potentialTable. 

{jt.clique.nosAssociados.node.potentialTable}[jt.clique.potential

Table] 

 Set utilityTable values to 0. [jt.clique.utilityTable] 

 Add to the utilityTable each associatedUtilNodes.node 

utilityTable. 

{jt.clique.associatedUnitNodes.node.utilityTable}[jt.clique.utility

Table] 

 For each separator in jt: 

 Set potentialTable values to 1. [jt.separator.potentialTable] 

 Set utilityTable values to 0. [jt.separator.utilityTable] 

 Make consistent by collecting and distributing evidences. 

 Make a internal copy of the potentialTable and utilityTable of all cliques 

and separators  in jt.{jt.clique.potentialTable.dataPT, 

jt.clique.utilityTable.dataPT, jt.separator.potentialTable.dataPT, 

jt.separator.utilityTable.dataPT} [jt.clique.potentialTable.dataCopy, 

jt.clique.utilityTable.dataCopy, jt.separator.potentialTable.dataCopy, 

jt.separator.utilityTable.dataCopy] 

o If the beliefs of the jt have already been initialized: 

 Restore data from the internal copy done. 

{jt.clique.potentialTable.dataCopy, jt.clique.utilityTable.dataCopy, 

jt.separator.potentialTable.dataCopy, jt.separator.utilityTable.dataCopy} 

[jt.clique.potentialTable.dataPT, jt.clique.utilityTable.dataPT, 

jt.separator.potentialTable.dataPT, jt.separator.utilityTable.dataPT] 

o Make consistency by mean of collect and distribute evidences. {jt.clique.child} 

[jt.clique.potentialTable, jt.separator.potentialTable] 
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o Make a copy of the data in the tables: copy both potentialTable and utilityTable 

from dataPT to dataCopy in all cliques and separators. 

o For each node in copiaNos:  

{jt.sep.potentialTable, jt.clique.potentialTable}[node.associatedClique] 

  If it's a ProbabilisticNode: look for the separator that contains this node 

which has the smallest potentialTable and set this separator as 

associatedClique of the node. 

 If it's a DecisionNode or it doesn't exist a separator which contains this 

node: look for the clique that contains this node which has the smallest 

potentialTable and set this clique as associatedClique of the node. 

o For each node in copiaNos: 

 Init marginalList as a new array of Floats. [node.marginalList] 

 Set marginalList values to values obtained from 

nodo.cliqueAssociado.potentialTable. 

{node.cliqueAssociado.potentialTable} [node.marginalList] 

 

From JUNCTION_TREE_COMPILED_STATE to LINKAGE_TREE_MADE_STATE 

For each linkage: 

 Clear the linkList. [linkage.linkList] 

 Assign a new jt (junction tree) to this linkage. [linkage.jt] 

 Call makeCliqueList(n1.jt.clique0) method, where makeCliqueList(Clique c) does the 

following: 

{n1.jt.cliques} 

o Create a new clique (b) with the nodes intersection between this linkage and c. 

o Add b to jt.cliques. [linkage.jt.clique] 

o Add to jt.linkList a new link with b as host0. [linkage.jt.linkList] 

o For each clique child of c: 

[linkage.jt.clique, linkage.jt.linkList, linkage.jt.clique.parent, 

linkage.jt.clique.child] 

 Call makeCliqueList(child) obtaining b2, the new intersection clique 

created from the child. 

 Set b as parent of the child. 

 Add b2 as child of b. 

o Return b. 

 Call remove1stPass method where, for each link in linkage.jt.linkList, the following is 

done: 

[linkage.jt.linkList] 

o If the clique hasn’t children: 

 Remove nodes from linkage.jt.linkList.link.clique that are already in the 

parent of this clique. 

 If the clique hasn’t nodes, remove this link. 
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 Call remove2ndPass method where, for each link in linkage.jt.linkList, the following is 

done: 

[linkage.jt.linkList] 

o If all nodes in link.clique are already in the parent: remove link. 

o If any of the children of the parent of this clique (a brother) has all of its nodes: 

remove link. 

 Call assignV1 method where, for each link in linkage.jt.linkList, the following is done: 

[linkList.link.Host1] 

o Look for the linkage.n2.jt.cliques.clique what contains all the nodes of the 

link.clique and set this as link.Host1. 

 Call initTables method, where the following is done: 

[jt.separators, linkList.link.clique.potentialTable, jt.separators.separator.potentialTable] 

o InitSeparators: for each linkage.jt.clique: 

 For each clique.child: 

 Construct a new separator with the nodes of the intersection of 

its nodes. 

o For each linkList.link.clique.potentialTable: 

 Add as many variables as nodes in the clique. 

 Set all of these variables to 1. 

o For each jt.separators.separator.potentialTable: 

 Add as many variables as nodes in the separator. 

 Set all of these variables to 1. 

From LINKAGE_TREE_MADE_STATE to BELIEFS_INITIALIZED_STATE 

Starting in the subnetwork net0: 

 Call collectBeliefs(net0) method where, the following is done: 

o For each adjacent (netAdj): 

 If netAdj has adjacents, call collectBeliefs(netAdj) 

sendCollectBeliefs(destinationSubNetworkId, requiredCompilationState) 

 Call updateBeliefs (net,  netAdj) 

sendUpdateBeliefs(destinationSubNetworkId, fromId, fromAdjacent) 

 Call distributeBeliefs(net0) method where, the following is done: 

o For each adjacent (netAdj): 

 Call updateBeliefs(netAdj,  net) 

sendUpdateBeliefs(destinationSubNetworkId, fromId, fromAdjacent) 

 Call distributeBeliefs(netAdj) 

sendDistributeBeliefs(destinationSubNetworkId, 

requiredCompilationState) 
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updateBeliefs(netToUpdate, fromNet): 

 For each links.linkage: 
o Linkage.absorb(fromAdjacent = true) 

 For each linkage.linkList.link: 

 Link.absorbIn(fromAdjacent) 
[link.originalLinkTable, link.newLinkTable, 
link.clique.potentialTable] 

 RemoveRedundancy: 

 For each linkage.jt.separator: 
o Remove from separator.probabilityFunction all 

variables which are in linkage.clique2 and are not in 
separator. 

o Copy to the separator.probabilityFunction values in 
linkage.clique2. 

 For each linkList.link which clique is linkage.clique2: 
link.removeRedundancy() 

 For each linkage.linkList.link: 

 Link.absorbOut(fromAdjacent) 
[link.originalLinkTable, link.newLinkTable, 
link.v0/v1.potentialTable] 

 For the subnetwork to what beliefs propagate: 

 Absorb2() 

Link.absorbIn(fromAdjacent): 

 Copy clique.potentialTable to originalLinkTable 
{link.clique.potentialTable}[link.originalLinkTable] 

 Copy the part of clique (fromAdjacent / fromParent) link.v1/v0.potentialTable whose 
nodes are in link.clique, to link.newLinkTable. 
{link.v1/v0.potentialTable}[link.newLinkTable] 

 Copy values in newLinkTable to link.clique.PotentialTable. 
{link.newLinkTable}[link.clique.potentialTable] 

In short, take the corresponding part of clique link.v1/v2 and set it as 
link.clique.potentialTable. 

Link.absorbOut(fromAdjacent): 

 Divide link.newLinkTable by originalLinkTable. 
{link.originalLinkTable}[link.newLinkTable] 

 Multiply link.v0/v1.potentialTable by link.newLinkTable.potentialTable obtained. 
{link.newLinkTable}[link.v0/v1.potentialTable] 

SubNetwork.Absorb2(): 

This.jt.consistency() 

This.updateMarginals() [nodeList.node.marginalList] 

From BELIEFS_INITIALIZED_STATE to COMPILATION_DONE_STATE 

Do nothing. This compilation will represent the complete update of beliefs in the iterative 

version presented in the following section. 
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IV - 2.1.b.2. Adding and propagating Beliefs 

Add Finding 

 Set the evidence of this node to the number passed. [node.evidence] 

 Set the marginal of this node according to the evidence set. {node.evidence} 

[node.marginalList] 

Update Evidences (at SubNetwork class) 

 For each node with evidences, call to Update Evidences (at TreeVariable class): 

o Multiply the node.associatedClique.potentialTable.dataPT by marginals in 

node.marginalList. {node.marginalList} 

[node.associatedClique.potentialTable.dataPT] 

 Make the consistency of this subnetwork.junctionTree: 

o Update junctionTree.n with the normalize probability. 

o Collect evidences to the root node by updating the separator.potentialTable and 

the clique.potentialTable {clique2.potentialTable} [separator.potentialTable, 

clique1.potentialTable] 

o Distribute evidences from the root node by updating the 

separator.potentialTable and the clique.potentialTable {clique1.potentialTable} 

[separator.potentialTable, clique2.potentialTable] 

 For each node which is a TreeVariable, call to UpdateMarginals (at ProbabilisticNode 

class): 

o Update node.marginalList with values obtained from 

node.associatedClique.potentialTable. {node.associatedClique.potentialTable} 

[node.marginalList]. 

 For each node if node.hasLikelihood property is true, remove evidences from this node 

and set hasLikelihood to false. {node.hasLikelihood} [node.evidence, 

node.hasLikelihood]. 

 

Shift Attention from a subnetwork to another 

 Make path: obtain a list with the subnetworks, which need to be updated to update a 

concrete subnetwork. 

 For each pair of linked subnetwork composing the path, following the path, call to 

UpdateBelief. This is described above, in Compilation Process. 

 

IV - 2.2. Iterative Architecture for Multi-Agent MSBN 

IV - 2.2.a. Introduction 

This architecture proposes that each subnetwork (or its associated agent) can work 

independently. Even though multiple agents may acquire evidence asynchronously in parallel 

(compare with the single user case where evidence is always entered into the current subnet), 

the corresponding communication operations of MSBNs ensure that the answers to queries 
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from each agent are consistent with evidence acquired in the entire system after each 

communication. Since communication is infrequent, the operations also ensure that between 

two successive communications, the answers to queries for each agent are consistent with all 

local evidence gathered so far and are consistent with all evidence gathered in the entire system 

up to the last communication. Therefore, this architecture can be characterized as one of 

functionally accurate, cooperative distributed systems. 

Notation used in this section 

As a link before this report and the programmed code, this section uses some notation that 

corresponds to programmatic language. The conventions used are: 

 Names of objects are shown corresponding to programmed ones. That is, to refer to a 

link that belongs to a Linkage that is in the list of this subnetwork named links, we will 

use the notation subnetwork.links.linkage.linkList.link. The explanation of this notation 

is, since the subnetwork has a list of Linkages called links, a linkage is trivially called 

linkage, each Linkage has a list of Links called linkList, and each Link in this list is trivially 

called link. 

 Objects used to extract some information at a determinate step or process are enclosed 

between curly brackets {}. For example, if in a determinate step we use the Links of a 

Linkage to know the shared nodes, after the description of this step {linkage.linkList.link} 

will be written. 

 Objects modified during a determinate step or process are enclosed between square 

brackets []. For example, if in a determinate step we modify a property of a Link of a 

Linkage, after the description of this step [linkage.linkList.link.property] will be written. 

 The interface methods used for communication between subnetworks are written in a 

gray color. 

Communication Framework 

This architecture uses a communication framework that supports asynchronous message 

sending. This means that, when a message arrives, a simple operation (normally queue the 

information conveniently) needs to be done. It has been achieved using an already developed 

communication framework: JGroups, which is a reliable group communication toolkit written 

entirely in Java. It is based on IP multicast. 

Although developed architecture is independent from communication framework, there are 

several services provided by JGroups toolkit that are not easily found in other communication 

frameworks, such as: 

 Notification about joined / left /crashed members 

 Point-to-multipoint and Point-to-point messaging 

 State transmission  
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Class Diagram 

To describe the developed architecture, the class diagram shown in Figure IV-3 is proposed. 

There the relationships between the more important classes belonging to the developed 

architecture can be seen. Those classes that belong to the core of UnBBayes, such as Node, 

Network or Edge, are not shown in this diagram due to they have not been written by us. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-3 Class diagram for Iterative Architecture 
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State Diagram 

In Iterative architecture, the state of the compilation can go back to a previous state. This can 

contrast with the previous state logic shown in section IV - 2.1.a for synchronous architecture. 

State diagram shown in Figure IV-4 includes those states that belong to compilation process, as 

well as those that precede and follow it.  

 

 

 

Figure IV-4 State diagram for Iterative architecture 
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IV - 2.2.b. Detailed Description 

In this section, we give a high detailed description of the basic operations performed along the 

states given above. For that purpose, we use the notation conventions given in section IV - 2.1.a. 

IV - 2.2.b.1. Initialization 

Create a new SubNetworkPart 

 Associate subnetwork file to load. 

 Associate an even listener. 

Start 

 Create a new Thread (loaderThread) which will call startInTheSameThread. 

StartInTheSameThread 

 Load the SubNetworkCompiler (snc) associated to the corresponding file. This snc will 

have already loaded the subnetwork. 

 Set the initial currentCompilationState to ANY_STATE and the targetCompilationState to 

COMPILATION_DONE_STATE. 

 Clear pendingCompilationStates list. 

 Create a new JGroupsCommSender and a new JGroupsCommReceiver. 

 Start a new Thread (compilationThread), which will try to compile repeatedly while 

keepAlive is true. 

IV - 2.2.b.2. Compilation 

From ANY_STATE to INITIAL_STATE 

 This compilation state is only used for indicate that no state has been set yet. 

From INITIAL_STATE to INITIAL_RESET_STATE 

 Clear Linkages, Adjacents and parent. [linkages, adjacents, parent] 

 Verify Consistency 

 Local Moralization. Add fill-ins needed to arcosMarkov. Make a copy of edgeList in 

copiaArcos, but removing all edge with destination in a decision node. {edgeList} 

[copiaArcos, arcosMarkov] 

 Only the first time: 

o Save the public info about this subnetwork (snInfo) in the snInfo sorted map. 

[snInfo] 

o Send the public info about this subnetwork to all Hypernodes in MSBN. 

publishNodes 
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From INITIAL_RESET_STATE to HYPERTREE_DONE_STATE 

 CheckLinks: 

o Find the intersection between each pair of subnetworks with the information 

contained in snInfo. 

o Choose as root the node that is the first in the sorted list snInfo, sorting the 

items according to alphabetical order. 

o Recursively, assign linkages between the subnetwork that is not in hypertree yet 

and has the largest amount of nodes in common with another subnet that is 

already in hypertree. 

o If there are any networks that cannot be connected with hypertree, another 

root node will be chose to continue this process. In this case, our MSBN is 

divided in several MSBN due to some subnetwork is down. 

o If there are any changes in parent or adjacent subnetworks, these changes are 

applied and continue compilation will be necessary. If, on the contrary, there are 

no changes in this part of hypertree, we will jump to 

LINKAGE_TREE_MADE_STATE compilation state. 

 Verify Cycles (in the whole MSBN): 

Root Hypernode will send a message to call all subnetworks to start marking its 

nodes. This message has an associated cycleTestingId. Only last received id will 

be used to check cycles. 

sendVerifyCycles  

When each subnetwork receives this message, will start to mark all leaf and root 

nodes that it has. In the case of public nodes, only will be marked those root 

nodes whose parents are contained in this subnetwork and all of them are 

already marked. A public leaf node will be marked when all children of this node 

have been marked in each subnetwork. For this purpose, a subnetwork will send 

a message to those that share the same node when it has marked all the 

children of that node. 

sendNotifyMarkedChildNodes 

When every public node is marked, a message will be sent to all subnetworks 

that share this node. 

SendDistributeMark 

Finally, when a subnetwork has all its nodes marked, will send a message to the 

root to indicate that. Root will store these messages to know when the MSBN 

has completed the cycle check. Then, root will send the same message to all 

subnetworks. The meaning of this message depends on who is the sender. 

sendNotifyCycleVerificationDone 

From HYPERTREE_DONE_STATE to MORALIZATION_INITIALIZED_STATE 

 Restore the original markov arcs obtained in local moralization. 
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From MORALIZATION_INITIALIZED_STATE to MORALIZATION_DONE_STATE 

 For each adjacent: 

Ask to perform local moralization. [ArcosMarkov] 

getSubNetworkPublicPartWithId(requiredState=MORALIZATION_INITIALIZED) 

 For each adjacent: 

Distribute arcosMarkov of this subnetwork. 

sendAddMarkovArcsFromMoralization 

 For the parent (if exists): 

Distribute arcosMarkov of this subnetwork. [arcosMarkov of the parent] 

sendAddMarkovArcsFromMoralization 

From MORALIZATION_DONE_STATE to TRIANGULATION_INITIALIZED_STATE 

 Make a copy of nodeList of this subnetwork in its copiaNos. [copiaNos] 

 Clear the elimination order list (oe) of this subnetwork. [oe] 

From TRIANGULATION_INITIALIZED_STATE to TRIANGULATION_DONE_STATE 

 Eliminate Depth (caller=null): 

o For each adjacent: [adjacent] 

 Update this adjacent 

getSubNetworkPublicPartWithId(requiredState=TRIANGULATION_INITIA

LIZED) 

 If(minimumWeightTriangulation(adj))  

Distribute the arcs added during triangulation of this 

subnetwork.  

distributeMyArcsTo(destination=adjacent) 

 For each adjacent different than caller: 

Ask to Eliminate Depth:  

sendEliminateDepth(caller=thisSubnetwork) 

 If(adjacent has parent) 

 If(minimumWeightTriangulation(parent)) 

o Distribute the arcs added during triangulation of this 

subnetwork. 

distributeMyArcsTo(destination=parent) 

 For each adjacent: 

Update this adjacent 

GetSubNetworkPublicPartWithId(requiredState=TRIANGULATION_INITIALIZED) 
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Distribute the arcs added during triangulation of this subnetwork. 

distributeMyArcsTo(destination=adjacent) 

Ask to perform Triangulation and return arcs [arcs] 

getSubNetworkPublicPart(requiredState=TRIANGULATION_DONE) 

 If(this subnetwork has parent) 

Ask to init triangulation. 

getSubNetworkPublicPart(requiredState=TRIANGULATION_INITIALIZED) 

Distribute the arcs added during triangulation of this subnetwork. 

distributeMyArcsTo(destination=parent) 

From TRIANGULATION_DONE_STATE to JUNCTION_TREE_COMPILED_STATE 

 Reset the evidences in each node of the subnetwork. [node.evidence] 

 Put a new Junction Tree as jt of this subnetwork. It has separator and clique lists empty.  

[jt] 

 Add all possible cliques of this subnetwork to jt.cliques. [jt.cliques] 

 Associate an index to each clique in jt.cliques and sort jt.cliques according to this index. 

[jt.clique.index, jt.cliques (order)] 

 Sort nodes in cliques and separators according to the elimination order. [jt.clique.nos 

(order)] 

 For each node in this subnetwork: 

o Add to each jt.clique tables (potentialTable and utilityTable) as many variables as 

nodes in this clique. {jt.clique.node} [jt.clique.potentialTable, 

jt.clique.utilityTable] 

o Add to each jt.separator tables (potentialTable and utilityTable) as many 

variables as nodes in the clique. {jt.separator.node} [jt.separator.potentialTable, 

jt.separator.utilityTable] 

o For each node in the subnetwork, add this node to the appropriate list of the 

jt.clique which has the minimum size potentialTable. This appropriate list is 

nosAssociados in the case of this node is a ProbabilisticNode or 

associatedUtilNodes otherwise. {nodeList.node}[jt.clique.nosAssociados, 

jt.clique.associateUtilNodes] 

 Init the beliefs of the jt: 

o If the beliefs of the jt haven’t been initialized yet: 

 For each clique in jt: 

 Set potentialTable values to 1. [jt.clique.potentialTable] 

 Multiply the potentialTable by each nosAssociados.node 

potentialTable. 
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{jt.clique.nosAssociados.node.potentialTable}[jt.clique.potential

Table] 

 Set utilityTable values to 0. [jt.clique.utilityTable] 

 Add to the utilityTable each associatedUtilNodes.node 

utilityTable. 

{jt.clique.associatedUnitNodes.node.utilityTable}[jt.clique.utility

Table] 

 For each separator in jt: 

 Set potentialTable values to 1. [jt.separator.potentialTable] 

 Set utilityTable values to 0. [jt.separator.utilityTable] 

 Make consistent by collecting and distributing evidences. 

 Make a internal copy of the potentialTable and utilityTable of all cliques 

and separators  in jt.{jt.clique.potentialTable.dataPT, 

jt.clique.utilityTable.dataPT, jt.separator.potentialTable.dataPT, 

jt.separator.utilityTable.dataPT} [jt.clique.potentialTable.dataCopy, 

jt.clique.utilityTable.dataCopy, jt.separator.potentialTable.dataCopy, 

jt.separator.utilityTable.dataCopy] 

o If the beliefs of the jt have already been initialized: 

 Restore data from the internal copy done. 

{jt.clique.potentialTable.dataCopy, jt.clique.utilityTable.dataCopy, 

jt.separator.potentialTable.dataCopy, jt.separator.utilityTable.dataCopy} 

[jt.clique.potentialTable.dataPT, jt.clique.utilityTable.dataPT, 

jt.separator.potentialTable.dataPT, jt.separator.utilityTable.dataPT] 

o Make consistency by mean of collect and distribute evidences. {jt.clique.child} 

[jt.clique.potentialTable, jt.separator.potentialTable] 

o Make a copy of the data in the tables: copy both potentialTable and utilityTable 

from dataPT to dataCopy in all cliques and separators. 

o For each node in copiaNos:  

{jt.sep.potentialTable, jt.clique.potentialTable}[node.associatedClique] 

  If it's a ProbabilisticNode: look for the separator that contains this node 

which has the smallest potentialTable and set this separator as 

associatedClique of the node. 

 If it's a DecisionNode or it doesn't exist a separator which contains this 

node: look for the clique that contains this node which has the smallest 

potentialTable and set this clique as associatedClique of the node. 

o For each node in copiaNos: 

 Init marginalList as a new array of Floats. [node.marginalList] 
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 Set marginalList values to values obtained from 

nodo.cliqueAssociado.potentialTable. 

{node.cliqueAssociado.potentialTable} [node.marginalList] 

From JUNCTION_TREE_COMPILED_STATE to LINKAGE_TREE_MADE_STATE 

For each linkage: 

 Clear the linkList. [linkage.linkList] 

 Assign a new jt (junction tree) to this linkage. [linkage.jt] 

 Call makeCliqueList(n1.jt.clique0) method, where makeCliqueList(Clique c) does the 

following: 

{n1.jt.cliques} 

o Create a new clique (b) with the nodes intersection between this linkage and c. 

o Add b to jt.cliques. [linkage.jt.clique] 

o Add to jt.linkList a new link with b as host0. [linkage.jt.linkList] 

o For each clique child of c: 

[linkage.jt.clique, linkage.jt.linkList, linkage.jt.clique.parent, 

linkage.jt.clique.child] 

 Call makeCliqueList(child) obtaining b2, the new intersection clique 

created from the child. 

 Set b as parent of the child. 

 Add b2 as child of b. 

o Return b. 

 Call remove1stPass method where, for each link in linkage.jt.linkList, the following is 

done: 

[linkage.jt.linkList] 

o If the clique hasn’t children: 

 Remove nodes from linkage.jt.linkList.link.clique that are already in the 

parent of this clique. 

 If the clique hasn’t nodes, remove this link. 

 Call remove2ndPass method where, for each link in linkage.jt.linkList, the following is 

done: 

[linkage.jt.linkList] 

o If all nodes in link.clique are already in the parent: remove link. 

o If any of the children of the parent of this clique (a brother) has all of its nodes: 

remove link. 

 Call initTables method, where the following is done: 
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[jt.separators, linkList.link.clique.potentialTable, jt.separators.separator.potentialTable] 

o InitSeparators: for each linkage.jt.clique: 

 For each clique.child: 

 Construct a new separator with the nodes of the intersection of 

its nodes. 

o For each linkList.link.clique.potentialTable: 

 Add as many variables as nodes in the clique. 

 Set all of these variables to 1. 

o For each jt.separators.separator.potentialTable: 

 Add as many variables as nodes in the separator. 

 Set all of these variables to 1. 

From LINKAGE_TREE_MADE_STATE to BELIEFS_INITIALIZED_STATE 

Each subnetwork: 

 Collect beliefs by doing the following: 

o Wait for receiving a belief update from each adjacent subnetwork and then, 

send a belief update to this subnetwork’s parent if it exists. To send a belief 

update to this subnetwork’s parent, send the information of the potentialTable 

of the sharing clique (equivalent to host1 of a link) removing the information 

corresponding to private nodes. 

sendTransferBeliefsToParent 

 Distribute beliefs by doing the following: 

o Wait for receiving a belief update from this subnetwork’s parent (if it exists) and 

then, send a belief update to each adjacent subnetwork. 

sendTransferBeliefsToAdjacent 

 

updateBeliefs(netToUpdate, fromNet): 

 For each links.linkage: 
o Linkage.absorb(fromAdjacent = true) 

 For each linkage.linkList.link: 

 Link.absorbIn(fromAdjacent) 
[link.originalLinkTable, link.newLinkTable, 
link.clique.potentialTable] 

 RemoveRedundancy: 

 For each linkage.jt.separator: 
o Remove from separator.probabilityFunction all 

variables which are in linkage.clique2 and are not in 
separator. 

o Copy to the separator.probabilityFunction values in 
linkage.clique2. 
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 For each linkList.link which clique is linkage.clique2: 
link.removeRedundancy() 

 For each linkage.linkList.link: 

 Link.absorbOut(fromAdjacent) 
[link.originalLinkTable, link.newLinkTable, 
link.v0/v1.potentialTable] 

 For the subnetwork to what beliefs propagate: 

 Absorb2() 
Link.absorbIn(fromAdjacent): 

 Copy clique.potentialTable to originalLinkTable 
{link.clique.potentialTable}[link.originalLinkTable] 

 Use the information received as newLinkTable.  
 

 Copy values in newLinkTable to link.clique.PotentialTable. 
{link.newLinkTable}[link.clique.potentialTable] 

In short, take the corresponding part of clique link.v1/v2 and set it as 
link.clique.potentialTable. 

Link.absorbOut(fromAdjacent): 

 Divide link.newLinkTable by originalLinkTable. 
{link.originalLinkTable}[link.newLinkTable] 
Multiply link.v0/v1.potentialTable by link.newLinkTable.potentialTable obtained. 

{link.newLinkTable}[link.v0/v1.potentialTable] 

SubNetwork.Absorb2(): 

This.jt.consistency() 

This.updateMarginals() [nodeList.node.marginalList] 

 

 

From BELIEFS_INITIALIZED_STATE to COMPILATION_DONE_STATE 

Perform updating of beliefs according to list of received beliefs. 

Every time a new belief update is received, the subnetwork goes back to this compilation state 

and performs an update of the beliefs with the source subnetwork. 

IV - 2.2.b.3. Absorbing pending compilation states 

Between each compilation state, absorbPendingCompilationState method is called. 

It reads the list of pendingCompilationStates and change the currentCompilationState according 

to the petitions received. 

This way, we can go back in the compilation process depending on the requirements introduced 

in this list. 

For example, let BELIEFS_INITIALIZED_STATE pending compilation state be added to the list, 

when this pending compilation state is absorbed, the compilation goes back to 

BELIEFS_INITIALIZED_STATE, where beliefs have already been initialized. Then, the compilation 

continues from that compilation state. 
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IV - 2.2.b.4. Adding and propagating Beliefs 

Add Finding 

 Add the new evidence to the list of pending Beliefs and add a new pending compilation 

state BELIEFS_INITIALIZED_STATE to go back to this state if necessary. 

 When compilation reaches BELIEFS_INITIALIZED_STATE, the list of pending Beliefs is read 

and the following is done: 

o Set the evidence of this node to the number passed. [node.evidence] 

o Set the marginal of this node according to the evidence set. {node.evidence} 

[node.marginalList] 

Update Evidences 

 When a new finding is added, a new belief update is sent to each adjacent subnetwork. 

 If a subnetwork receive a new belief update, it propagates this to each adjacent, but to 

the subnetwork from which this belief update has been received. If receive two belief 

updates at the same time from different subnetworks, it propagates this belief update to 

all its adjacent subnetworks, included those from which it has received these belief 

updates. 

IV - 2.2.b.5. Attending received messages 

Communication framework used, JGroups (see II - 6.1), allows asynchronous reception of 

messages. This means that the reception of the messages is executed in a different thread than 

compilation or other processes. Thus, a message can be needed to be received at any moment, 

although its use be done at a different moment. 

That is why there are several queues for different purpose received messages. Each message is 

labeled with one of the following tags. In response to each received message, a way of 

procedure is shown below. 

publishNodes 

 Add the information received about a subnetwork in the snInfo list. 

 If any information is added, add a new pending compilation state INITIAL_RESET_STATE. 

verifyCycles 

 Try to mark all that nodes which can be marked.  When a public node is marked, send a 

new distributeMark message. 

 If all nodes have been marked, send a notifyCycleVerificationDone to the root. 

 If is the root subnetwork and all other subnetworks have completed the verification of 

cycles, send a notifyCycleVerificationDone to all subnetworks. 

distributeMark 

 Set the node passed as marked. Another subnetwork has marked it. 
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notifyMarkedChildNodes 

 Set the child nodes from the sender subnetwork as marked to allow the marking of this 

node. 

notifyCycleVerificationDone 

This message has a different meaning depending on which subnetwork sends it. 

 If the sender is a subnetwork different from root, this message means that all nodes of 

this subnetwork have been marked successfully. 

 If the sender is the root subnetwork, this message means that all subnetworks have 

marked all its nodes successfully. 

addMarkovArcsFromMoralization or addMarkovArcsFromTriangulation 

 Add the markov arcs passed to the list of received markov arcs corresponding to the 

sender subnetwork. 

 Add a new pending HYPERTREE_DONE_STATE compilation state. 

transferBeliefsToAdjacent or transferBeliefsToParent 

 Add a new pending belief update with the data received. 
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IV - 2.2.c. The keys of this architecture 

After the full-detailed description of this architecture presented in section IV - 2.2.b.2, an 

overview of the more important characteristics of this architecture is shown in this section. 

These all features have been adopted during the analysis of the solution proposed and form the 

base of the developed architecture. 

IV - 2.2.c.1. Reactive behavior 

In this architecture, each node has a reactive behavior. This means that each Hypernode do not 

waste time of process trying to discover other Hypernodes or information about them. 

To know the existence of other Hypernodes, each Hypernode that joins the group in JGroups 

(that is initialize the communication process) publish the information that all other Hypernode 

need to know about it. Publish the identifiers of all its public nodes, the identifier of the 

Hypernode and the markov arcs that this Hypernode can share with other Hypernodes. This first 

message is sent to all Hypernodes in the MSBN and allows all Hypernodes to know its place in 

the Hypertree. 

Likewise, a Hypernode do not need to ask for the fill-ins to its adjacent Hypernodes. Instead, 

when a new fill-in is created, it is immediately communicated to the adjacent Hypernodes, which 

have to recompile to incorporate the new information received. 

Similarly, when new information is received from other Hypernode, according to the type of this 

information, a Compilation Pending is added to the corresponding queue. Thus, the Hypernode 

can recompile only those necessary steps to incorporate that information. 

When a belief update is received from another subnetwork, this is queued to be absorb when 

convenient. 

IV - 2.2.c.2. Compilation executed in a separated thread 

An only Hypernode has several threads to perform different task during its work. Mainly there 

exist three threads associated to a Hypernode. The first thread exists only during the loading of 

the Hypernode and is the responsible for the creation of the Hypernode and the other threads 

without affect to the thread that launches this Hypernode. The second thread is created when 

JGroups component is created associated to the Hypernode, and is the responsible for receiving 

messages and adding the received information to the corresponding queue to be processed 

later. The last thread is the compiler thread. Compiler thread is always trying to reach the 

highest state of compilation. When the whole compilation is performed, this thread sleeps until 

a new event occurs or any new information is received and going back in compilation is needed. 

Summarizing, new events are always queued to be read when convenient. 

IV - 2.2.c.3. Distributed Verification of cycles 

The greatest difficulty in the developed system is the dynamism that it can manage. Before a 

Hypernode can have reached compilation, a new Hypernode may have been added to the 

MSBN. 

In this scenario, we need to be able to check that the state of the created MSBN is the correct. 

That means we need to check that there is not any cycle in the BN formed by the MSBN. 
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To achieve this, a technique about marking nodes is followed, as described in [23]. Over the 

technique described in this article, we have included several modifications that are summarized 

below.  

To carry out the verification, messages need to be sent between adjacent Hypernodes. Those 

messages could be confused between different Hypertrees, causing a wrong verification result. 

To avoid this, when a new Hypertree is built, after the discovering or falling of a Hypernode, root 

Hypernode send a message to all Hypernodes assigning a new verification identifier. All 

messages sent during this verification have this assigned identifier and verification messages 

that contain an identifier different that current are dropped. Finally, when a Hypernode verifies 

that it does not contain any cycle, this information is sent to the root, which is the responsible 

for the knowledge of the state of the verification of the cycles in the MSBN. 

To mark a node, sometimes a Hypernode needs to know if all Hypernodes that contains any 

children of this node have already marked it. To allow this, when a Hypernode mark all children 

of a public node, send a message to inform all Hypernodes that share this node about the event. 

As each Hypernode knows, thank to the information sent in the publication of nodes made at 

the beginning, the identifiers of all nodes relative to shared nodes, it can be achieved easily. 

IV - 2.2.c.4. Moralization with all fill-ins received in the history 

Fill-ins mean the same whether they come from moralization or from triangulation. Thus, when 

a new fill-in is received in a Hypernode, compilation return to the beginning of moralization. 

Across the history of a Hypernode, all received fill-ins are saved and included during 

moralization. 

However, when a Hypernode falls, all its adjacent Hypernodes check for the fill-ins that the fallen 

Hypernode had sent to them, and remove those fill-ins. 

As after the adding of a fill-in moralization results could have been changed, it is necessary that 

triangulation be repeated again to be consistent with the results. 

IV - 2.2.c.5. Linkage belongs to parent subnetwork 

In the single-agent architecture, Linkages (the shared part between two Hypernodes) do not 

belong to any Hypernode. They are just an object that the manager owns. However, this is an 

obstacle to carry out a well-distributed system that can be scalable. 

In this architecture, Linkages belong to the Hypernode that is associated by that Linkage and has 

a highest position in Hypertree. This way, from two Hypernodes connected by a Linkage, the 

parent one does not have any problem to carry out operations over the Linkage. Nevertheless, 

the child Hypernode cannot operate directly over the Linkage. To solve this issue, child 

Hypernode have to perform those operations to what it needs its private information before 

sending the changes to perform in the Linkage to the parent Hypernode. Then, when the parent 

Hypernode receives these semi-performed changes, it finishes the operation applying them over 

the Linkage. 

To maintain privacy, Linkages cannot have whole cliques that are connected by them. Then, its 

Links only have host0 and clique. The host1 clique is not explicitly saved. The child subnetwork 

adds the information received to the proper table by knowing only the names of the public 

nodes shared in the clique. 
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IV - 2.2.c.6. Hypertree recalculated in each Hypernode 

To avoid centralized paradigm, each Hypernode has to calculate the place it occupies in the 

Hypertree. As all Hypernode have all relevant information to perform this operation, the same 

operation is replicated in each Hypernode. This way, no messages are needed to build a correct 

Hypertree, and segmentation of a MSBN in several ones is allowed if the Hypernodes that 

connect them fail. It can be said that each Hypernode is independent from others, achieving the 

autonomy in each part of the MSBN. 

IV - 2.2.c.7. Essential information distributed to all nodes 

Each Hypernode only shares the public information about itself. That allows the maintaining of 

privacy, which is one of the main advantages of MSBN. Thus, each Hypernode only retain the 

public information about other Hypernodes. This feature can make certain operations more 

complicated than what they are sharing all information. 

IV - 2.2.d. The issues of this architecture 

Although developed architecture have fulfilled our expectations, there are some problems or 

not desired featured that need to be taken into account. These features can be the subject of 

future work to avoid potential problems that may be arisen. 

IV - 2.2.d.1. Infinite updating cycle 

In some situations, the including of new evidences can be done in different Hypernodes at the 

same time. As the system is distributed and each Hypernode works in parallel, depending on the 

situation and the delivery of the corresponding messages, updating cycle could result into an 

infinite cycle of beliefs updating that have no end. This problem is fully discussed in [24]. This is 

not properly a problem, in fact it has never been observed during the development of this 

project, but could result into undesired behaviors. 
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V - Test Plan 

Test plan has the task of verifying the proper functioning of the developed system by checking 

that it meets the requirements of performance. 

To facilitate the understanding of the test plan used in the project, this chapter is structured by 

presenting, first, the description of the model that has been used for test cases and, secondly, the 

description of such cases and test results. 
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V - 1. Test Specification 

In this section, we present an overview of the tests that have been done to verify the correction 

and well functioning of the developed system.  

Since synchronous architecture is not the target of this project, all tests described in this section 

are related to Iterative Architecture, which should be the center of the attention of the reader 

and is the great result of our work. 

 

First, we present the test plan that has been done on the system and, second, an analysis of 

requirements to check if they have been achieved and how much has been done. 

V - 1.1. Unit Tests 

Unit tests check that concrete parts of our developed system work correctly. As the developed 

builds on already developed frameworks, such as UnBBayes or JGroups, we assume that those 

frameworks work properly. Thus, unit tests corresponding to how an only Hypernode must react 

under changes or events need to be implemented.  

There exist two type of tests, those that check that something is sent correctly (Sender Tests), 

and those that check that the reaction showed when something is received is performed 

correctly (Receiver Tests). 

V - 1.1.a. Sender Tests 

V - 1.1.a.1. Initial Information – Sender Test 

This test checks that a Hypernode initializes its compilation properly sending the corresponding 

publication of shared information. In addition, it checks that the information contained in that 

message is complete and correct. 

V - 1.1.a.2. Sharing fill-ins from local moralization – Sender Test 

This test checks that a Hypernode sends correctly all fill-ins that have been added during local 

moralization.  

V - 1.1.a.3. Sharing fill-ins from triangulation – Sender Test 

This test checks that a Hypernode sends correctly all fill-ins that have been added during 

triangulation process. 

V - 1.1.a.4. Cycle verification – Sender Test 

This test checks that a Hypernode send correctly the information needed for the verification of 

non-existence of cycles in the whole MSBN. In addition, it checks that its own verification is 

performed properly when communications are not needed.  

V - 1.1.a.5. Finalization of cycle verification – Sender Test 

This test checks that a Hypernode send the corresponding message to communicate to root 

node that it has finished its own verification of cycles. 
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V - 1.1.a.6. Transferring beliefs to parent – Sender Test 

This test checks that a Hypernode, which is child of other Hypernode, sends the proper message 

to transfer its beliefs to its parent. It also checks that all data in the probability tables passed is 

correct. 

V - 1.1.a.7. Transferring beliefs to adjacent subnetwork – Sender Test 

This test checks that a Hypernode, which is parent of other Hypernode, sends the proper 

message to transfer its beliefs to its adjacent Hypernode. Additionally, it checks that the proper 

operations over Linkage are performed correctly by checking the results obtained. It also checks 

that all data in the probability tables passed is correct. 

V - 1.1.a.8. Stopping a Hypernode – Sender Test 

This test checks that a Hypernode is stopped correctly. It is very important, among other 

reasons, to allow an efficient test plan. Many problems have been found due to existing 

Hypernodes from past tests that continue its communication in the network. 

 

V - 1.1.b. Receiver Tests 

V - 1.1.b.1. Initial Information – Receiver Test 

This test checks that a Hypernode properly incorporates the received initial information about a 

new Hypernode in the group. In addition, it checks that the information incorporated to the 

knowledge of the Hypernode is complete and correct. 

V - 1.1.b.2. State Information – Receiver Test 

This test checks that a Hypernode, which is new in the group, receives an incorporates correctly 

the information about existing Hypernodes, which is passed as the state of the group. 

V - 1.1.b.3. Sharing fill-ins from local moralization – Receiver Test 

This test checks that a Hypernode receives and incorporates correctly all fill-ins that have been 

added during local moralization of other Hypernode. In addition, it must result in the return to a 

passed compilation state. 

V - 1.1.b.4. Sharing fill-ins from triangulation – Receiver Test 

This test checks that a Hypernode receives and incorporates correctly all fill-ins that have been 

added during triangulation process of other Hypernode. In addition, it must result in the return 

to a passed compilation state. 

V - 1.1.b.5. Cycle verification – Receiver Test 

This test checks that a Hypernode receives correctly the information needed for the verification 

of non-existence of cycles in the whole MSBN and continue its own verification with the new 

information added. In addition, it checks that its own verification is performed properly with the 

new information.  
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V - 1.1.b.6. Finalization of cycle verification – Receiver Test 

This test checks that the root Hypernode receives the corresponding messages to communicate 

that other Hypernodes have finished its own verification of cycles. In consequence, it checks that 

root Hypernode checks if all Hypernodes have already finished and if the message to 

communicate that cycle verification has finalized is sent correctly. 

V - 1.1.b.7. Transferring beliefs to parent – Receiver Test 

This test checks that a Hypernode, which is parent of other Hypernode, receives the proper 

message to receive new beliefs from its child. It also checks that all data in the probability tables 

passed is correct, and that all beliefs and marginals are correct after performing the beliefs 

update. 

V - 1.1.b.8. Transferring beliefs to adjacent subnetwork – Receiver Test 

This test checks that a Hypernode, which is child of other Hypernode, receives the proper 

message to receive new beliefs from its parent. It also checks that all data in the probability 

tables passed is correct, and that all beliefs and marginals are correct after performing the 

beliefs update. 

V - 1.2. Integration Tests 

Once Unit test have been passed, the complete functionality of a Hypernode in the MSBN is 

probed. Nevertheless, when more than two Hypernodes form part of the MSBN, different 

situations are presented that need to be taken into account. 

For this purpose, different MSBN have been developed to allow the performing of those tests. 

For each proposed MSBN, full compilation process is checked and, after compilation has 

finished, some evidences are added to check that belief updating is performed correctly. 

The tests contained in this section are sorted according to the size of the MSBN used. Thus, the 

first test presented correspond to a little MSBN that consists of just two Hypernodes, each of 

which has two nodes, and the last test presented correspond to a huge MSBN that consist of five 

Hypernodes, each of which have at least four nodes. In all cases, used MSBNs are extremely 

small compared with those that would be used in a real scenario. 

V - 1.2.a. Test using Ridiculous MSBN 

This test uses the smallest MSBN that can be built. The MSBN used in this test is shown in Figure 

V-1. 

 

Figure V-1 Ridiculous MSBN representation 

5part2c 5part1c 

var_0 A A var_2 
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V - 1.2.b. Test using Little MSBN 

This test uses a small MSBN that contains a V structure. The MSBN used in this test is shown in 

Figure V-2. 

 

Figure V-2 Little MSBN Representation 

V - 1.2.c. Test using Medium Size MSBN 

This test uses a three-Hypernode MSBN that involves the adding of fill-ins during moralization 

process but not during triangulation. The MSBN used in this test is shown in Figure V-3. 

 

 

Figure V-3 Medium size MSBN representation 

V - 1.2.d. Test using 2-subnetwork MSBN 

This test uses a simple two-Hypernode MSBN that allows the experimentation of testing with a 

non very difficult MSBN. The MSBN used in this test is shown in Figure V-4. 

 

Figure V-4 2-subnetwork MSBN representation 
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V - 1.2.e. Test using 3-subnetwork MSBN 

This test uses a three-Hypernode MSBN with a not quite difficult structure that involves the 

adding of fill-ins during moralization and triangulation processes. The MSBN used in this test is 

shown in Figure V-5. 

 

Figure V-5 3-subnetwork MSBN representation 

 

V - 1.2.f. Test using Acyclic MSBN 

This test uses a three-Hypernode MSBN that contains a cycle among the three Hypernodes to 

check that cycle verification works properly. The MSBN used in this test is shown in Figure V-6. 

 

Figure V-6 Acyclic MSBN representation 
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V - 1.2.g. Test using Cyclic MSBN 

This test uses a three-Hypernode MSBN that does not contain any cycle to check that cycle 

verification works properly. The MSBN used in this test is shown in Figure V-7. 

 

Figure V-7 Cyclic MSBN representation 

V - 1.2.h. Test using 5partc MSBN 

This test uses a commonly used MSBN in MSBN framework developing. This MSBN contains 

several V structures that provoke the adding of fill-ins in moralization, as well as during 

triangulation. 

Moreover, this MSBN has a complex Hypertree structure building due to shared nodes between 

Hypernodes is a little intricate. Such structure can result into Hypertree cycles if is not built 

correctly, fact by which this is a very suitable MSBN to prove that our framework is working 

properly. 

The MSBN used in this test is shown in Figure V-8. 

 

Figure V-8 5partc MSBN representation 
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V - 1.3. Adaptability Tests 

To check that adaptability requirements are satisfied, the following adaptability tests are done. 

V - 1.3.a. Apparition of a new Hypernode 

This test uses a three-Hypernode MSBN known as 3-subnetwork MSBN (see Figure V-5). The test 

starts with an only Hypernode alive. Then, two more are created and they should be added to 

the existing MSBN. 

V - 1.3.b. Falling of an existing Hypernode 

This test uses a three-Hypernode MSBN known as 3-subnetwork MSBN (see Figure V-5). The test 

starts with the three Hypernodes alive and calls stop method for the second one. Then, when 

the MSBN is restructured, the first Hypernode is stopped and the MSBN needs to be 

restructured again. 

V - 1.3.c. Two existing MSBN join into an only MSBN 

This test uses a three-Hypernode MSBN known as 3-subnetwork MSBN (see Figure V-5). The test 

starts with two non-adjacent Hypernodes alive, which are considered as two separated MSBNs. 

Then, the third Hypernode is created, what should result into the restructuration of the whole 

MSBN to be an only MSBN. 

 

V - 2. Test Results 

In this section, we analyze the results obtained to the tests described in section V - 1. To facilitate the task of revise 
these results, we have decided to show them in  

Table V-1.  

Each test has an identifier that is taken from the numeration of this report. Thus, test from point 

V - 1.1.b.3, will be associated with the identifier 1.b.3. 

For each test, is associated a punctuation that can vary from zero to five, meaning zero that this 

test is not passed at all, and five that this test satisfy all requirements presented. Punctuations 

that are in the middle mean, one that this test satisfy some requirements, two that this test 

satisfy hardly all requirements, and four that this test satisfy all requirements but can present 

some problems depending on the scenario conditions. 

 

Id. Punctuation Comments 

1.a.1 5  

1.a.2 5  

1.a.3 5  

1.a.4 5  

1.a.5 5  

1.a.6 5  
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1.a.7 5  

1.a.8 4 

When a test fails or need to be stopped manually due to it is 
blocked, stop is not performed correctly. In that situation, its 
needed to execute manually killall -9 java (in linux os) to 
eliminate all existing processes that continue running. 

1.b.1 5  

1.b.2 5  

1.b.3 5  

1.b.4 5  

1.b.5 5  

1.b.6 3 

Although verification is performed perfectly, the information 
resulting from this process is not used yet. It should be necessary 
a checking of the structure verification state before the beginning 
of belief updating. 

1.b.7 4 

Iterative paradigm involves a certain degree of uncertainty about 
the time in which the beliefs are updated. Thus, depending on the 
communication situation, verification of this test can incorrectly 
fail due to those time issues. Although several mechanisms have 
been developed to avoid these situations, those mechanisms are 
not always working correctly, what implies some incorrect 
situations. 

1.b.8 4 

Iterative paradigm involves a certain degree of uncertainty about 
the time in which the beliefs are updated. Thus, depending on the 
communication situation, verification of this test can incorrectly 
fail due to those time issues. Although several mechanisms have 
been developed to avoid these situations, those mechanisms are 
not always working correctly, what implies some incorrect 
situations. 

2.a 5  

2.b 5  

2.c 5  

2.d 5  

2.e 4 
It hardly never fails due to JGroups merging of views or dropped 
or disordered of messages. 

2.f 5  

2.g 5  

2.h 4 
It almost always fails due to JGroups merging of views or dropped 
or disordered of messages. 

3.a 5  

3.b 5  

3.c 5  

 

Table V-1 Test results summary 
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VI - Case study: FTTH 

The case study proposed builds on FTTH scenario. 

In this chapter, we present an architecture that uses the developed MSBN framework to perform 

the diagnosis and solving of failures in the FTTH scenario. 

First, a brief introduction to FTTH scenario is given. Second, a description of the proposed 

reasoning system is given. Third, model proposed to simulate FTTH scenario is presented. Finally, 

the corresponding MSBN that allows the diagnosis, inference and reasoning over the proposed 

simulated scenario is described. 
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VI - 1. FTTH Scenario 

Our case study is the scenario described in this section. This scenario is based in the FTTH-GPON 

(Fiber to the Home - Gigabit Passive Optical Network) architecture. This architecture use passive 

splitters to carry the signal to the final users. In this architecture, every user receives all 

information of the tree, but encrypting, each user processes only his information.  

In this scenario, there are the following important devices: 

 OLT – Optical Line Terminal (Active device) 

 Splitter (Passive device) 

 ONT – Optical Network Terminal (Active device) 

 RGW – Router Gateway (Active device) 

This list of devices exists per user in the scenario. In other words, there is at least one of these 

components per user. Several devices (like OLT or splitters) are shared to offer services to 

several users at the same time. 

 

 

Figure VI-1 FTTH scenario 

 

With the capacity of this technology, it is able to offer 2.5 GB/s to 64 users. In other words, each 

line from OLT has this capacity, but this line is shared between up to 64 users. Despite sharing 

the fiber, this architecture supports the providing of several services (IPTV, VoIP, data 

connection, etc.) at same time. However, even more, this technology can be improved with 

WDM (Wavelength-Division Multiplexing) to obtain more bandwidth and, at this way, provide 

more services. 

This scenario consists on an operator that provides several services to final users through a 

FTTH-GPON architecture based in the image shown below. 
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Figure VI-2 FTTH scenario with splitter divisions 

 

The topology of the access network is shown in the figure: two splitters between each ONT and 

its OLT. The first splitter from OLT divides the signal into 4, and the second one divides it into 16. 

Then, 64 users (one ONT and one RGW per user) per OLT have access to the network. 

VI - 2. Proposed reasoning system 

The reasoning system proposed over the FTTH scenario consists of a Multi-agent system 

distributed across the whole scenario. 

Each active device has an associated agent, which perform tests over the device and extracts 

some information to allow reasoning. Each of those agents has an associated Hypernode that 

belongs to a MSBN shared between all agents. According to the collected information about the 

device, the Hypernode related to the agent is updated, allowing global inference and reasoning 

having into account the information collected in all devices. 

To allow this system, each active device in the FTTH scenario should have a higher processing 

capacity than in a normal FTTH scenario. 

Exploiting the feature of the developed MSBN framework that make it adaptable to falls and 

recovering of nodes, this whole system is able to reason in spite of the situation of the scenario. 

This is, if an optic fiber is damaged, the reasoning system can continue its work and discover 

where the failure is, despite of it has unconnected nodes. 

Internally, each agent can have different structures. Nevertheless, in our work we have chosen 

to use BDI agents. That mean each agent is divided internally in a Beliefs-Desires-Intentions 

structure. 

Beliefs are the knowledge that the agent contains. Beliefs represent the informational state of 

the agent, in other words its beliefs about the world (including itself and other agents). Beliefs 

can also include inference rules, allowing forward chaining to lead to new beliefs. Using the term 
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belief rather than knowledge recognizes that what an agent believes may not necessarily be true 

(and in fact may change in the future). 

Desires represent the motivational state of the agent. They represent objectives or situations 

that the agent would like to accomplish or bring about. 

Intentions represent the deliberative state of the agent, what the agent has chosen to do. 

Intentions are desires to which the agent has to some extent committed. In implemented 

systems, this means the agent has begun executing a plan. 

Inside BDI model, the MSBN is another belief contained in the belief base of the agent. Thus, 

MSBN information can be accessed as one more piece of agent’s knowledge and is used to 

control the behavior of the agents. 

All agents can reason together using MSBN framework. This framework abstract programmer 

from belief updating and makes easier the way of reasoning in the BDI agent environment. 

VI - 3. Proposed simulation model 

To simulate the reasoning system proposed in section VI - 2 a simple model is proposed. MASON 

simulation framework provides an easy way of simulate an agent environment with little effort 

[25]. 

To simulate the FTTH scenario, a class hierarchy is needed. In this set of classes, each device has 

a software representation with different available states that must be related with real ones. 

For this purpose, classes needed to represent FTTH scenario have been developed. To facilitate 

the comprehension of the reader, class diagram shown in Figure VI-3 is provided. 

 

Figure VI-3 Class diagram for the proposed simulation model 

According to FTTH scenario, the proposed simulation model have a representation for one of 

each devices included in the scenario. The more important device is OLT, which has several 

interfaces and is connected to the core of the network. Thus, several links can connect the OLT 

to the first splitter (splitter1). This first splitter splits the communication channel into four fibers 

to the second splitter (splitter2). The second splitter splits the communication channel into 16 
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fibers to the OLT. The OLT is the responsible for converting optic signals to electric signals. 

Therefore, if we abstract from the optic fibers and splitters, which are all passive devices, OLT 

and ONT devices have a direct communication. Following the ONT, Gateway is connected to 

provide connection to the HAN (Home Area Network). Depending on the situation, different 

users are connected to the HAN. 

VI - 4. MSBN for the case study 

The proposed case study deals with a streaming connection between a streaming server and a 

client. Both server and client are situated in a different HANs of the FTTH scenario. 

Distributed across the whole scenario there is a MSBN as can be seen in Figure VI-4. 

It is divided according to devices present in the scenario, and only information in yellow is 

shared between Hypernodes. 

In general, evidences taken from the scenario are colored in blue. However, several shared 

nodes are evidences too, such as OLT-ReceivedPower or ONT1-InputBitrate. 

 

 



Case study: FTTH 

110 

 

Figure VI-4 MSBN for FTTH Scenario 

  

OLT 
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Conclusion 

Most tasks performed by humans, as far as communications systems are concerned, could be 

performed by expert systems. Specifically, referring to network issues, more dynamic and 

precise systems and offering better features could be developed aided by expert systems. The 

future of our networks is self-organizing networks: self-configuration, self-optimization and self-

healing. Expert systems have an essential role in this vision and it is our job to make it possible. 

In this project, we have developed a reliable framework that allows reasoning across distributed 

belief networks. Based on Bayesian networks, this framework maintains coherence and 

consistency between the beliefs of different nodes, as well as it is able to handle uncertainty 

inherent to hardly any type of knowledge. The developed tool is scalable, stable, tolerant to 

communication failures, and portable. It uses asynchronous communication to maintain the 

independence between nodes. Thus, each node in the belief network is autonomous, and can 

reason with all the information it get, both its own information and external data obtained from 

other nodes. 

Nevertheless, other improvements can be done to this framework. In this project, we have 

presented several functionalities that have not been totally included in the resulting framework. 

These pending features have been introduced in this report, and form the basis for future work 

in this field. Some of this future work is summarized below. 

The developed framework performs the detection of cycles in the computed global graph. The 

continuation to this work should make sure a correction of situations where cycles appear is 

done, allowing the operation of this framework in more complex and dynamic systems. 

Before the propagation of beliefs between different nodes takes place, their initialization is 

needed. Currently, this initialization is performed following a hierarchical structure. To give more 

realistic and accurate results, it would be necessary to implement a belief initialization technique 

to weigh the knowledge of each node in terms of the relevance of the node. 

In conclusion, this distributed reasoning framework is able to adapt to different scenarios or 

situations. This framework can be used in a huge variety of applications in which distributed 

reasoning can provide a great advantage. An application of this framework to a concrete 

scenario is presented in this report. The application in FTTH scenarios serves as an example for 

future developments. It remains as future work, the use of this framework in other scenarios to 

bring out the potential application field this framework can have. 
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Glossary 

TERM CONCEPT 

BN Bayesian Network 

CPT Conditional Probability Table 

DAG Directed Acyclic Graph 

DPN Distributed Perception Network 

FOL First-Order Logic 

First-order logic is distinguished from propositional logic by its use of 
quantifiers. Each interpretation of first-order logic includes a domain of 
discourse over which the quantifiers range. 

FTTH Fiber to the Home 

Scenario in which fiber is available directly to the customer’s home provided 
by GPON directly from the CO (Central Office)-based OLT. 

GPON Gigabit-capable Passive Optical Network 

Standard that support high rates, enhanced security, and choice of Layer 2 
protocol (ATM, GEM, Ethernet). 

HAN Home Area Network 

IA Intelligent Agent 

An autonomous entity which observes and acts upon an environment and 
directs its activity towards achieving goals. 

JPD Joint Probability Distribution 

JT Junction Tree 

LAN Local Area Network 

MAS Multi-Agent System 

A system composed of multiple interacting intelligent agents. 

MEBN Multiply Entity Bayesian Network 

A first-order probabilistic logic that combines the representational power of 
first-order logic and Bayesian networks. 

MFrags MEBN fragments 

MSBN Multiply Sectioned Bayesian Network 

MSDAG Multiply Sectioned DAG 

MTheories MEBN Theories 

A set of MFrags collectively satisfies consistency constraints ensuring the 
existence of a unique joint probability distribution over instances of the 
random variables mentioned in the MFrags. 
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OLT Optical Line Terminal 

Active device which serves as the service provider endpoint of a passive 
optical network. It performs conversion between the electrical signals used by 
the service provider’s equipment and the fiber optic signals used by the 
passive optical network and coordinate the multiplexing between the 
conversion devices on the other end of that network (ONTs). 

ONT Optical Network Terminal 

Active device used to terminate the fiber optic line, demultiplex the signal into 
its component parts (voice telephone, television, and Internet), and provide 
power to customer telephones. 

OWL Web Ontology Language 

Family of knowledge representation languages for authoring ontologies. OWL 
can be used to explicitly represent the meaning of terms in vocabularies and 
the relationships between those terms. 

PLDM Prior / Likelihood Decomposable Models 

PR-OWL Probabilistic OWL 

RPC Remote Procedure Call 

SAS Single-Agent System 

A system composed of a single intelligent agent. 

WDM Wavelength-Division Multiplexing 

A technology multiplexes a number of optical carrier signals onto a single 
optical fiber by using different wavelengths of laser light. This technique 
enables bidirectional communications over one strand of fiber, as well as 
multiplication of capacity. 
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Appendix 1. Developer manual 

This chapter is intended to present the project thinking on a developer that continues the work 

done so far. Thus, this manual is intended as an initial reference point and reference for future 

iterations that new developers join the project with the consequent lack of diagnostic system 

present in multi-agent project. 

1. Subversion 

All developed source has been saved and organized using the subversion plugin integrated with 

eclipse (subclipse). 

Each change done has been documented with the corresponding information written in English 

language. 

Inside a commentary, the first words are always the more relevant ones while last words are 

other interesting details about the performed changes. The convention used is that the first 

sentences always indicates the state of the code. It shows if the code is completely working or if 

it has any detected bug or unsolved situation that needs to be specially cared by the developer. 

Subversion repository used has been Fibit project repository. Inside trunk folder, MSBN folder 

contains all developed source about this project. 

 

 

As UnBBayes has not been included in Maven repositories yet, the whole UnBBayes main project 

has been uploaded to Fibit subversion repository. Only a little change has been done over this 

project, which is the modification of pom.xml maven file to allow the skipping of UnBBayes tests 

during the installation of this in local Maven repository.  

Figure VI-5 Subversion directory structure 
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Inside MSBN folder, the version of this project that uses synchronous architecture is contained. 

The important classes are in the path src/main/java/unbbayes/prs/msbn. Test classes and 

examples are in the path src/main/java/unbbayes/example/multi, while single folder contains 

examples for the original MSBN version (Single-agent) provided by UnBBayes. 

MSBNAgents folder contains the agent framework developed for multi-agent synchronous 

architecture using Jadex agent platform. 

Finally, MSBNjGroups folder contains the multi-agent iterative MSBN framework developed as 

result of this project. Despite it also contains single and multi versions, multiIterative folders are 

those that contain the multi-agent iterative MSBN framework. The most important classes can 

be found in the path src/main/java/unbbayes/prs/msbn/multi_iterative. In addition, examples 

and tests can be found in the path src/main/java/unbbayes/example/multi_iterative. 

2. Maven 

All projects developed use Maven to automate compilation and building of the project, as well 

as dependencies management [26]. 

To use this tool, we have used the Maven plugin for eclipse m2eclipse, which let as saving some 

time and efforts. 

As UnBBayes is not part of Maven repositories yet, the first project that needs to be installed is 

UnBBayes project. For that purpose, we must download or import UnBBayes’ project using 

subclipse and click on run as / maven install in the secondary menu of the project. 

After UnBBayes’ project is installed in the local Maven repository, all other project can be 

installed by proceeding the same way. 
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Appendix 2. Installation manual 

1. Install Java JDK6 

Windows: 

1. Download and install Java JDK 6: JDK6. A 32bit version is needed for JpCap to work.  
2. Set 'JAVA_HOME' environment variable to point to installation directory. For example: 

'C:\Program Files\Java\jdk1.6.0_25'.  
3. Add '%JAVA_HOME%\bin' to 'path' environment variable.  

Ubuntu: 

1. Uninstall Open JDK if it's installed in your system.  
2. Download and install Java JDK 6: JDK6. A 32bit version is needed for JpCap to work.  
3. Add this location to the path by modifying '.bashrc' file located in your home folder. For 

example, the following lines could be added to '.bashrc' file:  

export JAVA_HOME=/home/username/Descargas/JAVA/jdk1.6.0_23 

export PATH=$JAVA_HOME/bin:$PATH 

2. Install Maven 

Windows: 

1. Download the last version of Maven2 .zip from Maven_2.2.1.  
2. Unzip it in the location where you want to have it installed.  
3. Modify the path by adding the location of the bin directory located inside the unzipped 

folder. For example: C:\Program Files\apache-maven-2.2.1\bin.  
4. Test Maven2 runs correctly by writing 'mvn' in the console.  

Ubuntu: 

Go to Synaptics Package Manager and install maven2.  

3. Install Eclipse and proper plugins 

1. Download and install Eclipse Classic: Eclipse  
2. Set in .ini file in eclipse folder, the launching option  

    -vm 

    C:/...path_to_java_jdk.../bin 

3. Install Subclipse_1.4 plugin: Subclipse_1.4  
4. Install m2eclipse plugin: m2eclipse  

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html#Maven_2.2.1
http://www.eclipse.org/downloads/
http://subclipse.tigris.org/
http://m2eclipse.sonatype.org/installing-m2eclipse.html
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4. Prepare the project and install dependencies: 

1. Download UnBBayes project from svn: 
http://lab.gsi.dit.upm.es/svn/fibit/trunk/MSBN/UnBBayes/UnBBayes 

2. Download MSBN project from svn: 
http://lab.gsi.dit.upm.es/svn/fibit/trunk/MSBN/MSBNjGroups 

3. Execute Maven Install over the whole project of UnBBayes.  
4. Execute Maven Install over the whole project of MSBN.  
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