

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR

DE INGENIEROS DE TELECOMUNICACIÓN

PROYECTO FIN DE CARRERA

BAYESIAN REASONING MODULE

FOR BDI AGENT ARCHITECTURES.

APPLICATION FOR DIAGNOSIS

IN FTTH NETWORKS

JESÚS LÓPEZ MÉNDEZ

2011

Proyecto fin de carrera

Título Bayesian Reasoning Module for BDI agent architectures.
 Application for diagnosis in FTTH networks

Autor Jesús López Méndez

Tutor Álvaro Carrera Barroso

Ponente Carlos Á. Iglesias Fernández

Departamento Ingeniería de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente Mercedes Garijo Ayestarán

Vocal Carlos Á. Iglesias Fernández

Secretario Ignacio Soto Campos

Suplente Luis Enrique García Fernández

FECHA DE LECTURA Y DEFENSA

CALIFICACIÓN

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR

DE INGENIEROS DE TELECOMUNICACIÓN

PROYECTO FIN DE CARRERA

BAYESIAN REASONING MODULE

FOR BDI AGENT ARCHITECTURES.

APPLICATION FOR DIAGNOSIS

IN FTTH NETWORKS

JESÚS LÓPEZ MÉNDEZ

2011

v

Resumen

El presente proyecto pretende desarrollar una infraestructura de razonamiento distribuido para

sistemas multiagente. En especial, el proyecto se ha centrado en el diagnóstico de fallos en

redes de telecomunicación. Dada la incertidumbre durante el diagnóstico y en la distribución de

los datos, en este proyecto se ha continuado un proyecto anterior que proponía el uso de redes

bayesianas para gestionar dicha incertidumbre.

En este proyecto, abordamos una de sus limitaciones: la incapacidad de gestionar una única red

bayesiana en redes de grandes dimensiones. Con este fin, se ha trabajado en el estudio de Redes

Bayesianas Multiseccionadas, que facilitan la distribución de una red bayesiana en diversos

nodos.

El proyecto ha propuesto un mecanismo de comunicación entre los nodos para mantener su

coherencia, que ha sido implementado mediante un middleware de multicasting JGroups. Con el

fin de validar este modelo, se ha desarrollado la aplicación al diagnóstico en un escenario FFTH,

integrando el sistema de razonamiento en una plataforma multiagente que se despliega sobre

un escenario FTTH simulado.

Palabras Clave

MSBN, distribuido, razonamiento, Bayesiano, probabilístico, diagnóstico, MAS, agentes

vii

Abstract

This project aims to provide an infrastructure for distributed reasoning over multiagent systems.

In particular, the project has focused on fault diagnosis in telecommunication networks. Given

the uncertainty over diagnosis and the distribution of data, this project has continued an earlier

project, which proposed the use of Bayesian networks to manage uncertainty.

In this project, we deal with one of its limitations: the inability to manage a single Bayesian

network in large communication networks. For this purpose, we have worked on the study of

Multiply Sectioned Bayesian Networks, which facilitate their distribution in different nodes.

The project has proposed a communication mechanism between the nodes to maintain

consistency, which has been implemented using a JGroups middleware multicasting. To validate

this model, it has been applied to diagnosis in FTTH scenario, integrating the reasoning system in

a multi-agent platform deployed over a simulated FTTH scenario.

Keywords

MSBN, distributed, reasoning, Bayesian, probabilistic, diagnosis, MAS, agents

ix

"You know, sometimes it is the artist's task to find out

how much music you can still make with what you have left."

Nov. 18, 1998, Itzhak Perlman, the violinist

xi

Acknowledgements

I want to thank everyone around me for the encouragement and strength they have given me to

carry out this project. I wish to thank all those with whom I have shared experiences in life.

First and foremost, I owe my deepest gratitude to my fiancée Verónica, who has always been by

my side and has supported me in both good and bad moments. She has been the motivation

that helped me finish my degree and this project, walking strongly towards our new life

together.

I would like to thank my family because they have been there day by day and they have put their

faith in me.

To my brother David, because in his company I have learned to think and to take apart devices

and, I have dreamed so big things like those that we sometimes achieve.

To my brother Samuel, who has taught me the worthiness of daily effort in everything we do. I

wish him the most lasting happiness in his future family.

To my parents José María and Isabel, who have stood a son that hardly goes by home, leaves the

bed unmade and talks more with the computer than with them. My father has given me an

example of how a person should behave, looking on the bright side of things, and has taught me

to be careful in everything I do. My mother has taught me to be able to withstand anything and

to know what is important at every moment. They have taught me the trust in God above all

things.

To my whole family, Grandparents, aunts, uncles, cousins, nephews and nieces. Especially to

Raquel, Alicia, Alberto, Pilar, Modesto, Mª Cruz, Mª Amor, and all those relatives who show that

distance is just a physical thing.

To my in-laws, which have shown that you can give without expecting anything in return.

To those loved people who are no longer with us: Marucha, Quico, Inesita, Manuela, Jose... We

feel that they accompany us from heaven. To Marucha, because she was much more than a

grandmother and marked my life in an impressive way. To Jose Arcones, his life was an example

to many of us. His love to everyone left a mark on our hearts that can never be erased.

To my childhood friends: Jesús, Raúl, Antonio, Rubén, Sergio, Víctor, Juan, Pablo, Ana, ... They

filled my world and that is why I will never forget them.

To my high school teachers: Juan Manuel, Pepe and Paco. They taught me that lessons are not

always written in the books… but almost always.

To my friends from the conservatory: Arturo, Daniel, Manuel, Cristina, María, René, Roberto,

Asís, Alba, Sandra, … They helped me discover the world of music and accompanied me during

that important time of my life.

To the Franciscan friar Emilio, and Sisters of the Cross, Aurora and Francis and the rest of their

communities. They have been my spiritual support and have guided me in the way of faith.

xii

I am indebted to my many of my classmates who support me every day. Especially to Emilio,

José Luis, Jaime and Sandra, Juanjo, Valerio, César, Jesús and Elena, Enrique, Laura, Eugenio,

Cecilia, José Antonio, Enrique, Diego, Paula, Benjamín, … They have been my family for long

periods of time and they have shown me that even if you try to escape, there is always someone

waiting for you or looking for you impatiently.

To those friends in higher grades that have helped me with advice and experience to take

decisions throughout my degree. Especially to Carlos, Iván and Pablo.

To my friends from weddings, musicals and other special moments: Mónica, Mª Cruz, Rubén,

Alicia, Dani, Gema, Ángel, Andrés, Miguel Ángel, Vicente, Carolina, Luismi, … I never truly though

such small events could unite people so much.

I am grateful to my Friends: David, Claudia, Inés, Ana, Rafa, Diego, Irene, Iris, Álvaro, Blanca,

María, Hellen, Sergio, Alex, … We have lived through countless adventures together, and I hope

to live many more to enjoy your great company once and again.

I would like to thank my tutor Álvaro Carrera for all the effort he has devoted to this project. For

all hours he has dedicated to the improvements to this system. I wish him a successful future in

the new challenges that he will face.

I cannot finish without saying how grateful I am to professors Carlos Á. Iglesias, Mercedes Garijo,

Ignacio Soto, Gregorio Fernández, José Ignacio Izpura, Javier Ferreiros. They have shown me that

there is still much left for me to learn. Especially to Carlos, because he has shown me that the

most important thing is to have faith in yourself and that things are never as tough as they seem.

Finally, I would like to thank all people that I forgot to mention, as well as say that the

development of this project has been a pleasure in the company of such a wonderful people.

xiii

Contents

Resumen ... v

Palabras Clave... v

Abstract .. vii

Keywords .. vii

Acknowledgements ... xi

Contents .. xiii

I - Introduction .. 1

I - 1. Project motivation .. 2

I - 2. Summary of proposed solution .. 2

I - 3. Structure of this project report .. 3

II - State of the art .. 5

II - 1. Introduction ... 6

II - 1.1. Distributed Reasoning .. 6

II - 1.2. Reasoning under Uncertainty ... 7

II - 1.3. Agent Paradigm and BDI model ... 7

II - 2. Reasoning Techniques ... 8

II - 2.1. Case-based reasoning ... 8

II - 2.2. Rule-based systems .. 9

II - 2.3. Fuzzy logic ... 10

II - 2.4. Bayesian Reasoning .. 11

II - 3. Distributed Reasoning with uncertainty .. 12

II - 3.1. Multiply Sectioned Bayesian Networks .. 12

II - 3.2. Distributed Perception Networks ... 12

II - 3.3. Prior / Likelihood Decomposable Models .. 15

II - 3.4. Multiply Entity Bayesian Networks .. 16

II - 4. Bayesian Networks .. 18

II - 4.1. Definition .. 18

II - 4.2. Inference in Bayesian Networks ... 18

II - 4.3. Hugin Architecture: Junction Tree of a Bayesian Network .. 21

II - 4.4. Building Bayesian Networks ... 25

II - 4.5. Inference Engines ... 26

xiv

II - 4.6. Directed Cycles in Graphical Models ... 32

II - 5. Multiply Sectioned Bayesian Networks in detail .. 34

II - 5.1. MSBN Framework .. 34

II - 5.2. MSBN Phases ... 38

II - 5.3. Compilation process... 38

II - 5.4. Synchronous architecture for Single-Agent MSBN .. 41

II - 6. Distributed Communication Frameworks ... 42

II - 6.1. JGroups .. 42

II - 6.2. Hazelcast .. 43

III - Analysis .. 45

III - 1. Scenario .. 46

III - 2. Use Cases ... 46

III - 2.1. Actors .. 46

III - 2.2. Use Case 1: Loading and operation of the MSBN ... 47

III - 2.3. Use Case 2: Adaptation of the system .. 48

III - 3. Requirements ... 50

III - 3.1. Functional Requirements .. 50

III - 3.2. Non-Functional Requirements .. 53

III - 3.3. Requirements Summary ... 57

III - 4. Tools comparison ... 58

III - 4.1. Reasoning Techniques Comparison .. 58

III - 4.2. Distributed Reasoning: MSBN, our choice .. 64

III - 4.3. BN Inference Frameworks: UnBBayes, our choice ... 65

III - 4.4. Distributed Communication Frameworks: JGroups, our choice 66

IV - Architecture and Design .. 67

IV - 1. System parts .. 68

IV - 2. Developed MSBN Architectures .. 68

IV - 2.1. Synchronous Architecture for Multi-Agent MSBN ... 69

IV - 2.2. Iterative Architecture for Multi-Agent MSBN ... 78

V - Test Plan ... 95

V - 1. Test Specification .. 96

V - 1.1. Unit Tests ... 96

V - 1.2. Integration Tests .. 98

V - 1.3. Adaptability Tests .. 102

xv

V - 2. Test Results ... 102

VI - Case study: FTTH .. 105

VI - 1. FTTH Scenario ... 106

VI - 2. Proposed reasoning system ... 107

VI - 3. Proposed simulation model ... 108

VI - 4. MSBN for the case study .. 109

Conclusion .. 113

Bibliography .. 115

Glossary .. 117

Appendix 1. Developer manual .. 119

1. Subversion .. 119

2. Maven ... 120

Appendix 2. Installation manual ... 121

1. Install Java JDK6 .. 121

Windows: .. 121

Ubuntu: ... 121

2. Install Maven .. 121

Windows: .. 121

Ubuntu: ... 121

3. Install Eclipse and proper plugins ... 121

4. Prepare the project and install dependencies: .. 122

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

1

I - Introduction

In this chapter, a short introduction to this project is given.

First, we show the motivation to the development of this project and why this project is

interesting for the field of communications.

Second, a summary of the developed solution is given to ease the reading and understanding

work.

Finally, we show a short description of the structure followed in this report, to facilitate the

reading of this document.

Introduction

2

I - 1. Project motivation

Communication networks are growing more and more in the recently times. Thus, the difficulty

of knowing the entire global network state and different states of each of its elements has

increased exponentially. Therefore, the diagnosis of a fault in one of these networks is often a

process characterized by high complexity and frequently requires the performance of skilled

operators. In addition, the fact that both the source and possible solution to a problem detected

in the network, a service or a device, a large percentage of cases, is beyond the reach of those

who detected their symptoms, the most obvious example of this is an end user who detects a

service.

Given the situation discussed in the previous paragraph, it becomes evident the usefulness of a

tool for network self-management and service. This tool detects and resolves problems

automatically without requiring any user intervention or operator. Still, clearly the complexity of

the system will try to simulate an experienced operator is not trivial.

A management tool needs to perform different processes, which could be considered

independent, although involving the same aim. In simple terms, these processes are analyzing

the state of the network and its elements in each moment, if given any sign of failure or

problem, it would happen to the diagnosis and, finally, solving the problem for system, network

or device to return to a state of normalcy and proper functionality whenever possible.

The ideas exposed above, the purpose of this final project is the development of a distributed

diagnostic system using MSBNs to reach a list of likely causes of failure. This idea can translate

this idea into three simple ideas:

 Development of a MSBN based distributed system that allows distributed reasoning

 Exposing how the use of MSBNs allows drawing conclusions at all times during handling

the uncertainty inherent in a diagnostic process.

 Development of a distributed system for diagnosis without overloading the network

hotspots and thus have greater scope in obtaining the causes of failure in FTTH

networks.

Potential applications include decision support to cooperative human users in uncertain domains

and troubleshooting a complex system by multiple knowledge based subsystems.

I - 2. Summary of proposed solution

Starting from a centralized MSBN architecture, we develop two architectures that allow

distributed reasoning by mean of synchronous and iterative methods respectively. The starting

architecture was designed to use shared objects between its nodes. This way, its distribution

across a network was not allowed.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

3

We have developed other architectures to enable the compilation and inference by message

passing. For this purpose, our system uses an interface that can be easily implemented

depending on the communications platform to use.

Inference is performed by mean of two different methods. The first, synchronous method,

performs the updating of beliefs on the whole network at the same time. This method has big

inconvenient when dealing with scalability and more complex networks. That is the reason why

another improved architecture has been developed. The second architecture uses iterative

methods that allow a more robust behavior that can adapt to circumstances and events

occurred in FTTH networks or other conflictive environments in which this architecture could be

used.

Before performing inference, a compilation process is needed to be done. About this process of

compilation, several architectural changes are proposed and introduced in the developed

architectures.

Thereby, the system developed can be considered to be at the forefront of the current state of

the art in the field of distributed Bayesian networks.

I - 3. Structure of this project report

In this section, we will introduce the main points of this report to do easier its reading.

First, we briefly review the reasoning and techniques currently available. Paying more attention

to distributed techniques, as well as to the techniques that have been chosen for the

development of this project.

Second, the analysis of the problem is done, showing the use cases, the requirements and the

reasons why the technologies chosen have been taken.

Third, the developed architectures are described and a detailed view of the whole process is

shown.

Forth, we show the test plan and the cases chosen to the verification of the developed

architecture.

Fifth, a description of the case study used is given, as well as a short introduction to FTTH

Scenario.

Finally, we expose the conclusions that result from the development of this project and the

future work that can be done to continue the research in this field.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

5

II - State of the art

In this chapter, the more important available technologies related with this project are

presented. Firstly, a summarized introduction to our whole work is shown. Secondly, the more

important techniques in reasoning and distributed reasoning can be seen. Thirdly, a more

detailed introduction to the techniques used to develop this project is presented. Finally, a short

introduction to possible communication frameworks is shown.

In this chapter, all these techniques are not evaluated or compared. The comparison of them and

the conclusions extracted from all information given in this chapter are shown in the next

chapter.

Introduction

6

II - 1. Introduction

Nowadays, many complex environments are part of the business core for a telecommunication

operator. This is the case, for example, of network and service management. It involves different

processes and they are performed by complex system in complex environments, understanding

complex element like an element that:

1. Has many number of parts

2. Properties of these parts are distributed in a heterogeneous way

3. These parts interact through different element in a non-trivial way

4. These parts are adaptable

5. These parts are evolutionary

Many issues are presented when a system has to deal with these features. For this reason, it is

needed a distributed reasoning technique that be able to handle uncertainty, to maintain the

coherence during the reasoning process between distributed nodes, to be able to self-learning,

etc.

In this issue, we study different reasoning techniques that have already been developed. We

compare several reasoning techniques that can be used with a distributed approach. Finally, we

propose a distributed reasoning system using Multiply Sectioned Bayesian Network, which can

be used and integrated in a BDI multi-agent system.

II - 1.1. Distributed Reasoning

It is very important, in distributed systems, achieve a distributed way to reason in complex

environments and maintain coherence and consistency in the reasoning.

There is an obvious weakness in distributed systems with central reasoning. Data from an

isolated area is lost in the reasoning process if, for example, this area is unable to communicate

with the central reasoning node. For example, let be a diagnosis system, there are peripheral

sensors and central data processing nodes. If these sensors lose the connection with central

nodes, their data could be not used in the reasoning process, thus the route cause of failure may

be lost in the diagnosis process.

On the other hand, if the reasoning process is distributed in the whole system, the system can

maintain private information about critical points and share only high-level information with

other entities. Furthermore, with a distributed reasoning approach, a lot of information can keep

in the same node where is generated reducing the overload of the communication network[1].

Using the same example that is shown above, the sensors can perform local reasoning to take

decisions about possible actions to be performed (test requesting, reconfiguration actions, etc.)

even without external connection. Then, the system would have many distributed nodes that

communicate between them with high-level information, i.e. with filtered and processed

information about all peripheral elements.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

7

II - 1.2. Reasoning under Uncertainty

The greatest difference between human intelligence and the intelligence of other creatures lies

in the fact that the former can, with the help of language, carry on knowledge accumulated over

thousands of years. So, the uncertainties of intelligence will definitely be reflected in

knowledge[2].

Uncertainty is a fundamental and unavoidable feature of daily life. In order to deal with

uncertainty intelligently, we need to be able to represent it and reason about it. Uncertainty is

ubiquitous to knowledge fusion. Almost any source of primary data carries some degree of

uncertainty.

There are several mechanisms or techniques to deal with uncertainty in intelligent systems.

Reasoning with uncertainty is a challenge that is solved using Bayes’ theory. The most important

techniques about uncertainty treatment are studied in this project and, finally, Bayesian

Networks are chosen to carry out this work.

Bayesian probability is a principled formalism for representing uncertainty and drawing

inferences in the presence of uncertainty. Bayesian methods have been widely applied in multi-

sensor data fusion systems. Bayesian networks are popular models for representing and

reasoning about problems involving many related hypotheses.

II - 1.3. Agent Paradigm and BDI model

An intelligent agent (IA) is an autonomous entity, which observes and acts upon an environment

and directs its activity towards achieving goals.

A Belief-Desire-Intention (BDI) agent is a concrete type of intelligent agent that follows the BDI

model. Superficially, BDI model is characterized by the implementation of an agent's beliefs,

desires and intentions. It actually uses these concepts to solve a particular problem in agent

programming. In essence, it provides a mechanism for separating the activity of selecting a plan

from the execution of currently active plans. Consequently, BDI agents are able to balance the

time spent on deliberating about plans (choosing what to do) and executing those plans (doing

it). A BDI Agent uses its beliefs to deliberate what plans execute to achieve perform its desires.

Although our developed MSBN framework could be used from any other program, not

necessarily based on agents’ model, we will focus on agent paradigm to make explanations

simpler. This way, each subnetwork, the MSBN part, will belong to the beliefs of an agent. The

agent will update this subnetwork with all the information and beliefs it obtain. The public part

of this subnetwork, the public beliefs, will be shared with other agents, allowing coordination

and cooperation between agents.

Using a distributed approach in a Multi-Agent system (MAS), each agent could represent its

knowledge in a Bayesian subnetwork. A model to reason and work with distributed Bayesian

networks should have the following basic capabilities as a distributed inference engine does:

1. If an agent is isolated from the rest of the system, it can infer its local knowledge based

in its local available information. In other words, independence, local robustness and

local intelligence.

Introduction

8

2. If none of the connections among the agents is damaged, through communication, the

state estimations for all of the agents are consistent. In other words, coordination and

system consistency.

3. If some agents are missing or isolated from the rest of the system, they can reorganize

themselves. Coordinated inferences can be initiated through the reorganized structures.

In other words, self-organization and inference automation.

II - 2. Reasoning Techniques

Many reasoning techniques can be used to process information in an intelligent system. For

example, some as rule-based systems, case based reasoning (CBR) systems, fuzzy logic systems

or Bayesian reasoning systems. A brief description of some of these techniques is shown below.

II - 2.1. Case-based reasoning

Case-based reasoning (CBR), broadly construed, is the process of solving new problems based

on the solutions of similar past problems. This reasoning technique find similar cases in a

predetermined past case base according to current inputs or observations. Each case typically

contains one scenario of a system. CBR has been formalized for purposes of computer reasoning

as a process with the following steps[3], [4]:

- Retrieve the most similar cases, which match the current system observations the most.

In this step, if several cases are chosen, logics/rules of combining them are required.

- Use the resulting case to try to solve the current problem.

- If some conflicts appear, revise and adapt the resulting case to a new case according to

current system observations.

- Add this new case into the case base as a way of self-extension and learning.

In other words, given a target problem, retrieve cases from memory those are relevant to

solving it. Map the solution from the previous case to the target problem. Having mapped the

previous solution to the target situation, test the new solution in the system and, if necessary,

revise. Then, after the solution has been successfully adapted to the target problem, store the

resulting experience as a new case in memory. We can see it clearly in the following scheme:

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

9

CBR works perfectly if the current situation matches one of the stored cases exactly. However,

enumerating and storing all possible cases for a complex system is not practical and if the case

base were too big, the retrieving process for a similar case would be very slow. Since a case

describes one scenario of the whole system, it would not be easy to implement in a distributed

way.

II - 2.2. Rule-based systems

In rule-based systems, knowledge is stored as rules in the knowledge base. The inference engine

applies the rules to a set of data and obtains conclusions. The knowledge base includes facts and

rules representing the knowledge about a particular system from the domain of expertise. A rule

indicates a relationship between two facts. Its simplest format is[5]:

IF (Conditions) Then (Facts or Actions)

Two algorithms of inference in rule-based reasoning are often used:

Forward chaining starts with the available data and uses inference rules to extract more data.

In other words, forward chaining is a top-down searching procedure. It searches the rule base

and when it finds the rule IF part conditions are satisfied, it uses the THEN part as the

conclusion.

Figure II-1 Case based reasoning steps. Referenced from [4].

Introduction

10

Backward chaining is the reverse. It is a bottom-up searching procedure. An inference engine

using backward chaining would search the inference rules until it finds one that has a

consequent (THEN clause) that matches a desired goal.

Searching strategies are very important for a rule based inference engine in terms of efficiency.

For a complex system, there are a large number of rules and facts stored in the database to

represent possible scenarios for the system. Frequently it results in a slow and computationally

expensive reasoning system.

The rule-based engine is a well-developed inference method and there exist many commercial

tools, which can be used to develop a rule based inference engine for a particular system. For

example, JESS is a rule-based engine-scripting environment written entirely in Sun’s Java

language by Ernest Friedman-Hill at Sandia National Laboratories in Livermore, CA. JESS uses an

enhanced version of the Rete algorithm to process rules. Rete was first designed by Dr. Charles

L. Forgy of Carnegie Mellon University in 1974. The Rete algorithm uses a rooted acyclic directed

graph to store pattern information. It intends to improve the speed of forward-chained rule

systems by limiting the effort required to recompute the conflicted set after a rule is fired.

Rule-based inference engines present some problems when developing a complex system, such

as:

- It is almost impossible to list all of the scenarios by using qualitative rules and facts to

describe the characteristics of a complex system even when the system is static.

- With a large number of rules and facts, searching the database efficiently is a very

challenging task.

- It is very hard to do accurate inference by using a limited set of rules when one part of

the system states is not just dependent on particular components under our control.

- It is hard to be distributed for a system with global behaviors. For a loosely coupled

complex system, each subsystem can have its own relatively independent rule base and

do the inference locally just by exchanging some facts information from other

subsystems. However, for a system with global behaviors, by using some local

inferences, it is very challenging to keep globally consistent inferences.

- It is difficult to do inference under significant uncertainties by using a pure rule based

inference engine.

II - 2.3. Fuzzy logic

Fuzzy logic is a form of many-valued logic derived from fuzzy set theory to deal with reasoning

that is robust and approximate rather than brittle and exact. Fuzzy logic variables may have a

truth-value that ranges in degree between 0 and 1.

An inference engine based on fuzzy logic is used to handle uncertain and imprecise information

as an extension of expert inference reasoning method. The basic steps of fuzzy logic reasoning

process[6]:

1. Transforms crisp inputs into fuzzy inputs by using corresponding input set

membership functions.

2. Search the rule base and fire the matched rules.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

11

3. Combine the matched rules to get one normalized value.

4. Defuzzify the normalized value back to the actual value according to corresponding

output set membership functions.

Fuzzy logic allows us to deal with approximate reasoning. However, as an extension of

deterministic rule based inference engine, it shares hardly the same problems for reasoning in

large-scale complex system as the deterministic rule-based inference engine does. The great

difference is that fuzzy logic can use truth-values to introduce beliefs that are not true or false.

This is not a solution to deal with uncertainty. Since results are uncertain when inputs are

uncertain, the reasoning in complex systems is difficult with fuzzy logic.

II - 2.4. Bayesian Reasoning

Bayesian reasoning systems use Bayesian inference that is a method of statistical inference in

which some kind of evidence or observations are used to calculate the probability that a

hypothesis may be true, or else to update its previously calculated probability. The term

“Bayesian” comes from its use of the Bayes’ theorem in the calculation process.

There are several approaches to use Bayesian inference in intelligent systems. Bayesian

networks are the key mathematic tool to perform Bayesian inference, but there are two clearly

different fields: “Bayesian Networks” and “Distributed Bayesian Networks”.

Bayesian Networks

The first one is a centralized approach. A formal definition of a Bayesian network is: “a

probabilistic graphical model that represents a set of random variables and their conditional

dependencies via a directed acyclic graph (DAG)”[7]. In other words, Bayesian networks are

graphical models representing cause-effect relationships among different events. It displays the

logic way of how human being thinks.

A graphical model consists of nodes and links. The nodes represent variables and the links

between nodes indicate cause-effect relationships. Links have directions, i.e. a link from to is

different from a link from to . If a link from to , is the cause (parent) and is the effect

(child) and vise versa. Each node can be continuous or discrete with finite number of states. All

of the nodes are connected with each other directly or indirectly through inherent relation in the

structure of the graph. Such a graphical model can be used to simulate and evaluate how

changes in some variables could affect the remaining nodes of the system.

Sometimes, it is difficult to distinguish from which variable is cause and which variable is effect.

Under such situations, one can choose either of them subjectively without much effect on the

validity of the model.

Bayesian Networks and its related theory will be shown in more detail in section II - 4.

Distributed Bayesian Networks

The distributed approach works as follows [8]. Instead of propagating all of the information

everywhere, it is possible to assess first the potential impact of every updating operation on the

belief of the target node and to limit the updating process so that only relevant information is

propagated. Doing so will decrease the amount of data traffic in the network and the amount of

computation expended on interference.

Introduction

12

However, it is important that the information we choose not to propagate be allowed to

accumulate at the boundaries and discharge its impact to new areas of knowledge once our

current set of belief becomes stagnant.

Essentially, a distributed Bayesian network for state inference includes four aspects as a general

distributed inference engine does:

 local information processing

 partial intermediate information exchange

 inference global consistency

 self-organization due to partial damage

There are several approaches to Distributed Bayesian Networks, some of which will be shown in

the following section II - 3.

II - 3. Distributed Reasoning with uncertainty

Currently, there exist three types of distributed Bayesian networks: Distributed Perception

Networks (DPNs), Prior/likelihood Decomposable Models (PLDM) and Multiple Sectioned

Bayesian Networks (MSBNs). All of them provide frameworks with different algorithms to

partially implement such a conceptual idea of distributed inference engine. In this section, we

discuss the three distributed Bayesian networks in detail. In addition, another framework is

introduced. Multiply Entity Bayesian Networks (MEBNs) combine the representational power of

first-order logic (FOL) and Bayesian Networks (BN).

II - 3.1. Multiply Sectioned Bayesian Networks

A MSBN consists of a set of interrelated Bayesian subnetworks each of which encodes certain

knowledge on a subdomain. Bayesian subnetworks are organized into a Hypertree structure

such that inference can be performed in a distributed fashion while answers to queries are exact

with respect to probability theory.

Each subnetwork only exchanges information with adjacent subnetworks on the Hypertree, and

each pair of adjacent subnetworks only exchanges information on a set of shared variables. The

great advantage of this organization is complexity of communication among all agents is linear

on the number of agents and the complexity of local inference is the same as if the subnet is a

single agent based BN.

A more detailed explanation of this distributed reasoning technique is shown in section II - 5 due

to MSBN is the reasoning technique chosen for this project.

II - 3.2. Distributed Perception Networks

Distributed Perception Networks(DPNs)are a distributed architecture for efficient and reliable

fusion of large quantities of heterogeneous and noisy information [9]. DPNs are composed of

numerous agents who cooperate with each other to process systematic reasoning. However,

DPNs have a few restrictions, which limit its application region.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

13

DPNs Domain Model

A DPNs domain model M is defined as a tuple , where is the set of local DAGs

of all DPN agents participating in a particular fusion organization. is a union of all variables

from local clusters and that contains the hypothesis node. is the set of

DPN separators and every separator has to be unique and satisfy restriction 1 (see below).

P is the set of potentials defined over the DPN domain model and are the potentials for

cluster , where and satisfying tree architecture and the running

intersection property (see II - 4.3).

A local DAG with domain in a DPN domain model contains a single root nodecorresponding

to a service variable and a set of input variables corresponding to aset of leaf nodes

 . The leaf nodes are always the descendants of the service node.

DPNs have very strict organization constraints, which make its implementation limited to a few

situations.

 Restriction 1: for any , it contains only one unique variable.

 Restriction 2: when adding a new agent with its cluster domain , it can connect toonly

one unique with a separator , where contains only one variable.

 Restriction 3: two local DAGs and with domains and respectively canconnect

each other if and only if the service variable of is identical to an input variable

 , where is the input variable set of .

If one agent joins the system, it should satisfy these three restrictions at the same time. These

three constraints are too strict. For a realistic system, normally, one agent could connect to

several agents and an interface (separator set) between two agents contains several variables. A

local DAG may contain several root nodes. A node in a separator could be an input variable of

one local DAG as well as an input variable of another local DAG.

DPNs deal with three types of agents: static modeling agents, dynamic modeling agents, and

appendable modeling agents. Each agent type updates its belief by using a specific algorithm.

Static Modeling Agents

An agent who implements static modeling building blocks can reason in an integrated way about

distributions over some quasi-static variables. An event is quasi static if it does not change

before the resulting observations are interpreted and used in a decision making process. In

another word, a quasi-static event does not involve for a certain period of time after they have

been materialized. For example, if a cow were infected, the cow would not be cured during one

time step of information fusion process.

Dynamic Modeling Agents

An agent who implements dynamic modeling building blocks can infer from a time series

observations. An algorithm for dynamic fusion process is shown in[9]. This algorithm has to

satisfy two assumptions:

 All observations are conditionally independent given the sensor propensity.

Introduction

14

 The generative model is the same for all observations of a certain type. It means that all

of the observations for the same sensor at different time steps are sampled by using the

same method and with the same model.

Appendable Modeling Components

An agent implements an additional modeling building block. Such an agent is used to support

extensibility for the multi-agent system and makes it flexible and scalable. An algorithm for

appendable fusion process is proposed in[9].

All of the agents need to collaborate together to achieve a reasoning task which maps available

observations to some hypotheses. To cooperate smoothly and efficiently, two algorithms are

used corresponding to two different situations.

Algorithm 1: Top down network configuration

This algorithm is used for self-organization based on the collaboration among multiple agents in

a distributed way without any centralized and dominated control agent in order to answer a

query of a unique service variable. This algorithm implements a simple self-organization rule:

when a query of a service variable is made, it searches the agents containing this service

variable. For each of the matched agents, it starts to look for other agents who connect to it by

its leaf nodes and satisfy restriction 3. After that, a set of DPNs are formulated, and then use an

algorithm similar to collect evidence process introduced in II - 5.4 to calculate the potential of

the queried service variable. In the collect evidence process, different agents will use their

corresponding algorithms to update their own believes.

Algorithm 2: Bottom-up Network Configuration

This algorithm is suitable for situations where it is desirable to organize fusion systems in

response to unusual observations. It implements a simple self-organization rule: when an

observation of a leaf variable is available, it searches the agents containing the corresponding

service variable of this observed leaf node. For each of the matched agents, it starts to look for

other agents who connect to it by its service variable and satisfy restriction 3.

In summary, DPNs as a distributed information fusion system has three limitations discussed in

previous context and the following characteristics [9]:

 Reasoning for a single hypothesis variable is processed in a distributed way. The

reasoning result reflects the entire available observations and is identical to the result

from a single united Bayesian network.

 It does not need to check initial states consistency before the distributed system can

work coordinately. Only local models need to be compiled in an independent way prior

to run time.

 The information fusion process can work in an asynchronous way, which will improve

the speed of reasoning process.

 The information fusion process is automatic and no pre-compilation or on-line check of

the formulated structure to guarantee globally consistent inference.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

15

As discussed before, for globally consistent inference in a distributed Bayesian network, there

are three prerequisites:

 All Bayesian subnetworks are organized into a tree structure.

 The tree structure satisfies running intersection property.

 Each node shared by two or more sub Bayesian networks should be a d-sepnode.

DPNs satisfies those three conditions implicitly during the formulation of the network due to its

strict requirements of individual sub Bayesian network structure and adding new node to the

system. More detailed discussion of DPNs can be found in [9].

II - 3.3. Prior / Likelihood Decomposable Models

Prior/likelihood decomposable models (PLDMs) was proposed to infer sensor states and bias

from noisy measurable data in large-scale complex distributed sensor networks in [10]. The

author pointed out that this method can handle dynamic agent systems, such as adding or

deleting agents and several damage situations, e.g., damaged communication links between two

agents, bad data caused by failed sensors in a robust way.

In sensor networks, each sensor is an agent. It divides all of the variables in the whole network

into two types: observable variables and latent variables. The observable variables are called

measurable variables; each measurable variable corresponds to one of the sensors on one of the

nodes. The latent variables are actually hidden variables, which are called environment

variables. The latent random variables characterize the state of the sensor networks’

environment, such as the true temperature, the true pressure, the bias of a sensor itself, etc. All

of the measurable variables are children of environment variables and the model needs to

specify each measurable variable state probability conditioned on its corresponding hidden

variables.

The basic idea of PLDMs is to give each node a subset of local priors. Those subsets of local

priors are organized into a junction tree structure (see II - 4.3) called external junction tree

structure. In order to increase the robustness of node missing or communication link damages,

prior for one node can be distributed to several different nodes as redundancy. The prior of one

node is lost only when no nodes that include this node’s prior are available. The global prior

distribution is obtained through message passing in the external junction tree similar to the

normal junction tree belief propagation described in II - 5.4. Message passed between two

agents is represented as a Prior/Likelihood factor of the shared variables.

A Prior/Likelihood factor for a set of environment variables is a pair where

 is a prior distribution for : .

 is a likelihood function: , where are the observation variables inone

node.

In summary, PLDMs has the following limitations for applications other than distributed sensor

networks.

 One sensor corresponds to one agent.

 All of the measurable variables are localized.

Introduction

16

 All of the variables for the interfaces are belong to the measured variables.

 It doubles quantities of message passing among agents.

 It could break the rules of keeping privacy of each individual agent.

 In order to make globally consistent inferences, pre-compilation or on-line formulation

and check of the formulated structure are needed

Detailed discussion of PLDMs can be found in [10].

II - 3.4. Multiply Entity Bayesian Networks

Multi-Entity Bayesian Networks (MEBN) is a first-order probabilistic logic that combines the

representational power of first-order logic (FOL) and Bayesian Networks (BN). However, MEBN is

still in development, lacking a software tool that implements their underlying concepts.

Ontologies play a major role in semantically aware systems, providing a means for highly

effective knowledge sharing. However, they lack a standardized treatment of uncertainty, a

ubiquitous feature of multisource fusion problems.

Uncertainty is ubiquitous to knowledge fusion. Almost any source of primary data carries some

degree of uncertainty. Bayesian probability is a principled formalism for representing

uncertainty and drawing inferences in the presence of uncertainty.

Bayesian networks (BNs) are popular models for representing and reasoning about problems

involving many related hypotheses. BNs have been widely applied to information and knowledge

fusion, but are fundamentally limited in their expressive power. Specifically, in a standard

Bayesian network, all the hypotheses and relationships are fixed in advance, and only the

evidence can vary from problem to problem.

Many multi-source fusion problems involve uncertain numbers of interacting entities related to

each other in ways that cannot be known in advance. For example, there may be an

indeterminate number of weakly discriminatory reports coming from an unknown number of

objects, and there may be uncertainty about which report should be associated with which

object. This kind of fusion problem produces an exponential set of association hypotheses that

require special hypothesis management methods.

MEBN logic combines the flexibility of Bayesian Networks with the representational power of

First-OrderLogic [11]. Among other features, MEBN logic can represent and reason with

association uncertainty, and thus provides a sound logical foundation for hypothesis

management in multi-source fusion.

MEBN represents the world as made up of entities that have attributes and are related to other

entities. Knowledge about the attributes of entities and their relation-ships to each other is

represented as a collection of MEBN fragments (MFrags) organized into MEBN Theories

(MTheories).

MFrag

An MFrag represents a conditional probability distribution of the instances of its resident

random variables given the values of instances of their parents in the fragment graphs and given

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

17

the context constraints. Random variables are graphically represented in an MFrag either as

resident nodes, which have distributions defined in their home fragment, or as input nodes,

which have distributions defined elsewhere. Context nodes are the third type of MFrag nodes,

and represent conditions assumed for definition of the local distributions.

Typically, MFrags are small, because their main purpose is to model “small pieces” of domain

knowledge that can be reused in any context that matches the context nodes. This is a very

important feature of the logic for modeling complex, intricate situations and is one that can be

seen as the knowledge representation version of the “divide and conquer” paradigm for

decision-making. While the latter breaks a hard, complex decision problem in a set of smaller

ones, the former uses a similar decomposition approach for representing intricate, complex

military situations. This decomposition is accomplished by modeling a complex situation as a

collection of small MFrags, each representing some specific element of a simpler situation. The

additional advantage of MEBN modeling is the ability to reuse these “small pieces” of

knowledge, combining them in many different ways indifferent scenarios.

Indeed, MFrags provide a flexible means to represent knowledge about specific subjects within

the domain of discourse, but the true gain in expressive power is revealed when aggregating

these “knowledge patterns” to form a coherent model of the domain of discourse that can be

instantiated to reason about specific situations and refined through learning. It is important to

note that just collecting a set of MFrags that represent specific parts of a domain is not enough

to ensure a coherent representation of that domain. For example, it would be easy to specify a

set of MFrags with cyclic influences (i.e. a random variable which has its probability distribution

influencing itself), or one having multiple conflicting distributions for a random variable in

different MFrags (i.e. a random variable with more than one home MFrag, each defining a

different distribution).

MTheory

In order to build a coherent model it is important to make sure that a set of MFrags collectively

satisfies consistency constraints ensuring the existence of a unique joint probability distribution

over instances of the random variables mentioned in the MFrags. Such a coherent collection of

MFrags is called an MTheory, and it represents a joint probability distribution for an unbounded,

possibly infinite number of instances of its random variables. This joint distribution is specified

implicitly through the local and default distributions within each MFrag, together with the

conditional independence relationships implied by the fragment graphs.

A generative MTheory summarizes statistical regularities that characterize a domain. These

regularities are captured and encoded in a knowledge base using some combination of expert

judgment and learning from observation. To apply a generative MTheory to reason about

particular scenarios, it is needed to provide the system with specific information about the

individual entity instances involved in the scenario. On receipt of this information, Bayesian

inference can be used both to answer specific questions of interest and to refine the MTheory.

Bayesian inference is used to perform both problem specific inference and learning in a sound,

logically coherent manner.

Introduction

18

MEBN logic provides a sound mathematical basis for representing and reasoning under

uncertainty. PR-OWL uses MEBN’s strengths to provide a framework for building probabilistic

ontologies, a major step towards semantically aware, probabilistic knowledge fusion systems.

II - 4. Bayesian Networks

Bayesian Networks are computational models that allow reasoning and inference in a similar

way as humans do. They are capable of integrate multiple different data sources to achieve a

coherent interpretation of these.

II - 4.1. Definition

A Bayesian Network is, in essence, an acyclic directed graph (DAG) which defines a factorization

of a joint probability distribution over the variables that are represented by the nodes of the

DAG, where the factorization is given by the directed links of the DAG[7].

In other words, a Bayesian Network is a graphical probabilistic model made of variables and

cause-effect relations between them. These variables are the nodes of the Bayesian Network

and cause-effect relations are represented as directed edges linking pairs of nodes. Each variable

has a finite set of mutually exclusive states.

More formally, let node be a parent of node . Using probability calculus, we state the

dependence between and by means of a conditional probability table (CPT) .

However, if also is a parent of , then the two CPTs and alone do not give any

clue on how the impacts from and interact. That is why we need a specification of a join CPT

 . This way, to each variable with parents is attached a conditional

probability table [12].

II - 4.2. Inference in Bayesian Networks

Rule-based expert systems have demonstrated their fields of use that was perfectly suited by

means of accurate factors or even by manipulating certainty factors. However, they have severe

problems when representing incomplete knowledge or reasoning with some degree of

uncertainty. When dealing with uncertainty, probability theory is the prevailing method.

Contrary to rule-based systems with certainty factors, inference in Bayesian networks is always

consistent. A Bayesian Network (BN) is a knowledge representation scheme as well as provides

effective and efficient inference. BNs provide a coherent and effective framework for decision

support systems that must function with uncertain knowledge. BNs offer a high level of

readability by providing a clear graphical representation while allowing for efficient

computations on certain subclasses of networks.

Although inference process in BNs is, a priori, more expensive than in other expert system,

efficient inference algorithms have been developed such that inference in Bayesian networks

can be done in fractions of a second even for large networks containing hundreds of variables.

Efficiency of inference, however, is highly dependent on the structure of the DAG, so networks

with a relatively small number of variables sometimes resist exact inference, in which case

approximate methods must be applied.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

19

As Bayesian networks most often represent causal statements of the kind , where is a

cause of and where often takes the role of an observable effect of , which typically cannot

be observed itself, we need to derive the posterior probability distribution given

the observation using the prior distribution and the conditional probability

distribution specified in the model. According to Bayes Theorem for performing this

calculation:

 Eq. II-1

where .This rule plays a central role in statistical

inference because the probability of a cause can be inferred when its effect has been observed.

More formally, a BN is a triplet . is a set of nodes. Each node is labeled with a variable

associated with a space. We shall use “node” and “variable” interchangeably. Therefore,

represents a problem domain. is a set of arcs such that is a directed acyclic graph

(DAG). We refer to as the structure of the BN. The arcs signify directed dependencies between

the linked variables. For each node , the strengths of the dependencies from its parent

nodes are quantified by a conditional probability distribution of conditioned on

the values of ’s parents. For any three sets , and of variables, and are said to be

conditionally independent given under probability distribution if

whenever . The basic dependency assumption embedded in BNs is that a variable is

conditionally independent of its non-descendants given its parents. This assumption allows ,

the joint probability distribution (jpd), to be specified by the product .

Conditional Probabilities

This can be shown in more detail by analyzing the types of rules in Bayesian Networks. Before

introducing the most important rule (Chain Rule) in Bayesian networks, we need to introduce

evidences/observations and product rule first.

Evidence / observations rule

Evidence / observations are defined as a collection of findings. There are two types of evidences:

hard evidence and soft evidence. Hard evidence on variable V is a specification of the value of V,

and soft evidence on variable V is a distribution on the values of V. Normally, in most of

applications, dealing with hard evidences is enough and most of software can only handle hard

evidences.

Product Rule

The Product Rule for probability calculus is the following

 Eq. II-2

Introduction

20

Marginalization

Let be a variable with states , then is a probability distribution over these

states:

 Eq. II-3

where is the probability of being in state .

From a table of probabilities the probability distribution can be

calculated. Let be a state of . There are exactly different events for which is in state ,

namely the mutually exclusive events . Therefore

 Eq. II-4

This calculation is called marginalization and we say that the variable is marginalized out of

 (resulting in). The notation is

 Eq. II-5

Chain Rule

Chain rule is formed by successively applying product rule. It is described in the following. For a

Bayesian network, its overall space consists of , then

 Eq. II-6

Let be sets of evidences/observations, then the joint probability including the

observations is

 Eq. II-7

And, normalizing the result we obtain

 Eq. II-8

For more details, see [13] page 22.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

21

II - 4.3. Hugin Architecture: Junction Tree of a Bayesian

Network

Among all variations developed, HUGIN is the most efficient junction tree-based architecture.

The Global Propagation method used in the HUGIN architecture is arguably one of the best

methods for probabilistic inference in BNs.

As shown in section II - 4.1, a Bayesian Network (BN) defined over a set of variables is a directed

acyclic graph (DAG) augmented with a set of conditional probability distributions (CPDs). More

precisely, each variable is represented as a node in the DAG and is associated with a CPD

 , where denotes the parents (also called family) of node in the DAG of the BN. The

product of the CPDs in a BN defines the joint probability distributions (JPD) for the BN as:

 Eq. II-9

where the total number of nodes is present in the BN and
 is the CPD for variable

in the BN.

Figure II-2 A notional Bayesian network example

In HUGIN architecture for probabilistic inference, a BN is first transformed into a secondary

structure called junction tree.

d

h
a

e

b

f

c

g

i

j

k

l

Introduction

22

Junction Tree

A Junction Tree (JT) is an undirected tree constructed from a BN whose nodes are clusters (also

called cliques) of variables (from the original BN). Given two clusters in JT, and , every node

on the path between them contains their intersection . A Separator in JT is

associated with each edge and contains the variables in the intersection between neighboring

clusters.

Phases

HUGIN architecture consists of several phases, the moralization, the triangulation, the

initialization (of the clusters in the JT) phase, and the propagation phase. The Global Propagation

method used in the propagation phase for performing message passing is well received and

implemented.

Before the propagation, initialization is done to obtain the potential for each cluster in the JT.

Then with the Global Propagation method, each cluster potential is transformed into cluster

marginal through passing messages with its neighboring clusters.

The efficiency of belief updating in Bayesian networks is very important for probabilistic

inferences. Establishing an efficient belief-updating algorithm is fundamental to the application

of Bayesian networks. Hugin Algorithm is among the most efficient methods known for belief

updating in Bayesian networks in the state of the art. For this, a simple introduction to this

algorithm is given below.

Hugin belief updating algorithm[14] includes a few steps: moralization, triangulation, joint tree

formulation and full propagation.

Moralization A moral graph of a Bayesian network is an undirected graph, which connects any

pairs of variables being members in any existing in the Bayesian network.

d

h
a

e

b

f

c

g

i

j

k

l

Figure II-3 A otional Bayesian Network after Moralization

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

23

Triangulation In order to introduce the idea of triangulation, first, the concept of perfect

elimination sequence is introduced. When eliminating a node in a Bayesian network, we work

with the product of all potential with in the domain. The domain of this product consists of

and all of its neighbors in the moral graph. When is eliminated, the resulting potentials has all

of 's neighbors in its domain and all of the variables in this new domain need to be connected

pare wise.

When some nodes are eliminated, new links could be introduced if this node is the link between

one or more node, this links are called fill-ins. The introduction of fill-ins indicates that a

potential of a new domain is presented when a variable is eliminated. Eliminating all of the

variables in a network one by one forms an elimination sequence and an elimination sequence

without introducing fill-ins is a perfect elimination sequence. There are several concepts that

have to be introduced:

Complete Nodes Set a set of nodes is complete if all nodes in this set are pair wise linked.

Clique a complete set is a clique if it is not a subset of another complete set, i.e., the maximal

complete set contains a set of specific nodes.

Triangulated Graph an undirected graph with a perfect elimination sequence is called a

triangulated graph. The procedure to triangulate a graph is shown below:

1. Eliminate a simplicial node (nodes with a complete neighbor set are called simplicial),

then this node with its neighbors denoted as
 is a clique candidate.

2. If
 does not include all remaining nodes, go to step 1.

3. Keep the clique candidates that are not subsets of any other clique candidates.

4. The resulting set is the set of cliques.

An undirected graph is triangulated if and only if the cliques of this graph can be organized into a

join tree.

Running Intersection Property Let be a cluster tree over domain . We say has the

running intersection property if whenever there is a variable and is contained

in every cluster in the unique path in between and , where and are two clusters in

 [15].

Join Tree Let be the set of cliques from an undirected graph, and let the cliques of be

organized into a tree . If satisfies the Running Intersection Property, then the tree is a join

tree.

Junction Tree Let be a triangulated Bayesian network with a set of potentials . A junction

tree for is a join tree for with the following further structure: each potential is

attached to a clique who contains , each link has the appropriate separator attached,

each separator contains two mailboxes (one for each direction)[16].

There are three key processes for belief propagation in junction trees: Collect Evidence,

Distribute Evidence and, the combination of both, Full Propagation Evidence[13].

Figure II-4 A notional Bayesian Network after triangulation

Introduction

24

Initialization Phase

After the JT is built, the initialization phase of the HUGIN architecture sets up the initial

potentials for the clusters of the JT. A potential is in fact a non-negative function over a set of

variables. In particular, the CPD of each node from the original BN is assigned to a cluster that

posses the node itself and its parents. Then, within each cluster, these assigned CPDs are

multiplied together to form one single potential for the cluster, i.e., the set of CPDs

assigned to a cluster are combined to form the initial cluster potential

.

Global Propagation

Then the Global Propagation method begins by choosing an arbitrary cluster as a root cluster

from which the propagation is initiated. A JT with clusters will have to perform

message passes starting from the leaves, dividedinto two phases.

When a cluster receives messages from all its neighbors except that one towards the root, it is

allowed to send a message upwards, and so on until the root cluster has received messages from

all its neighbors. This is called the COLLECT-EVIDENCE.

Now the root cluster sends a message to all its neighbors, and every cluster receiving a message

itself, sends another one to all its neighbors except the one from which it received the message,

and so on until the leaves are reached. This is called DISTRIBUTE-EVIDENCE.

After these two rounds of message passes, the cluster potentials of the JT become cluster

marginals.

Absorb mechanism

A single message passing in the Global Propagation method of HUGIN architecture is from one

cluster of the JT to another cluster through the separator. It requires a large number of

arithmetic operations.

Consider two adjacent clusters and with the separator in Figure II-5. The single

message passing is shown in Figure II-5, where cluster sends a message through the separator

 to cluster .

Cluster passing a message to cluster (or absorb the message form) means that a two-

step computation needs to be done in sequence:

Figure II-5 Single message passing through a separator

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

25

4. Updating the separator potential by setting

 Eq. II-10

5. Updating the cluster potential by setting

 Eq. II-11

The potential new
 is the so-called “message” passed from cluster to cluster in the JT.

Thus, a single message passed by the Global Propagation method requires three kinds of

arithmetic operations: summations, multiplications and a substantial number of divisions. As

HUGIN needs messages to be passed, huge numbers of arithmetic operations are

required to process these messages.

As the initialization phase is concerned with the formation of cluster potentials and potentials

actively participate in the propagation phase through message passing, the improvement of the

initialization phase can also improve the performance of the Global Propagation method of

HUGIN architecture.

II - 4.4. Building Bayesian Networks

As described above, a Bayesian network can be described in terms of a qualitative component,

consisting of a DAG, and a quantitative component, consisting of a joint probability distribution

that factorizes into a set of conditional probability distributions governed by the structure of the

DAG. The construction of a Bayesian network thus runs in two phases.

 First, given the problem at hand, one identifies the relevant variables and the (causal)

relations among them.

 The resulting DAG specifies a set of dependence and independence assumptions that

will be enforced on the joint probability distribution, which is next to be specified in

terms of a set of conditional probability distributions,
 , one for each “family”,

 , of the DAG.

A Bayesian network can be constructed manually, (semi-)automatically from data, or through a

combination of a manual and a data driven process, where partial knowledge about structure as

well as parameters (i.e., conditional probabilities) blend with statistical information extracted

from databases of cases (i.e., previous joint observations of values of the variables). Manual

construction of a Bayesian network can be a labor-intensive task, requiring a great deal of skill

and creativity as well as close communication with problem domain experts. Extensive guidance

on how to manually construct a probabilistic network can be read in [7]. This includes methods

and hints on how to elicit the network structure (with emphasis on the importance of

maintaining a causal perspective), methods for eliciting and specifying the parameter values of

the network, and numerous tricks that can be applied for solving prototypical modeling

problems.

Once constructed (be it manually or automatically), the parameters of a Bayesian network may

be continuously updated as new information arrives.

Introduction

26

Thus, a model for which rough guesses on the parameter values are provided initially will

gradually improve itself as it is presented with more and more cases.

II - 4.5. Inference Engines

A huge quantity of Inference engines is available over the world. In this section, we introduce

the main Inference Engines for Bayesian Networks with which we have had some experience.

Each one has different characteristics and algorithms. We briefly introduce also some of their

algorithms and their main features.

II - 4.5.a. SamIam

SamIam is a tool for modeling and reasoning with Bayesian networks developed completely in

Java by the Automated Reasoning Group of Professor Adnan Darwiche at UCLA.

SamIam includes two main components: a graphical user interface and a reasoning engine. The

graphical interface lets users develop Bayesian network models and save them in a variety of

formats. The reasoning engine supports many tasks including: classical inference, parameter

estimation, time-space tradeoffs, sensitivity analysis and explanation--generation based on MAP

and MPE.

SamIam has a tool called Code Bandit, which is intended to make it easy and fun for Java

programmers to learn how to write code based on our inference library Code Bandit writes

smart sample code for you, based on settings you configure in SamIam. For example, if you need

to use our library to build Bayesian network models, Code Bandit can write a sample program

that shows you what methods to call. Code Bandit can also write programs that demonstrate

how to execute queries on existing models. Code Bandit is intended to make it easy and fun for

Java programmers to learn how to write code based on our inference library.

SamIam supports the Expectation Maximization algorithm for estimating network parameters

based on given data. SamIam adopts the "case file" format of Hugin for specifying data as a set

of cases. SamIam includes utilities for generating data randomly from a given network and for

storing this data in case files.

SamIam supports a number of algorithms for inference in Bayesian networks, such as:

 Three implementations of the join tree algorithm based on: the Hugin architecture, the

Shenoy-Shafer architecture, and a new architecture that combines the best of previous

architectures.

 An implementation of the Recursive Conditioning algorithm with a time--space tradeoff

engine.

SamIam supports non--classical queries, such as the computation of partial derivatives with

respect to network parameters. It also supports query--specific inference, which prunes the

Bayesian network based on given query before inference algorithms are applied.

SamIam provides an engine for sensitivity analysis in Bayesian networks. The sensitivity analysis

engine allows us to specify constraints on network queries and will then identify minimal

parameter changes that are necessary to satisfy these constraints. This functionality allows

understanding the relationship between local parameters that quantify a Bayesian network, and

global conclusions drawn from the network.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

27

SamIam supports opening files in six formats for defining Bayesian networks: the Hugin.net

format, the Genie .dsl and .xdsl formats, the Interchange.dsc format used by the Microsoft

Bayesian Network Toolkit, the Netica.dne format and the Ergo .erg format.

For Hugin .net files, SamIam supports editing and saving conditional probability table (CPT)

values for discrete nodes, the structure of the network, and the appearance of the network.

For each of the other five file types, including Genie .dsl files, SamIam supports editing and

saving only the CPT and noisy-or weight definitions. The types of nodes defined within the Genie

program that SamIam understands are "chance" nodes defined by CPT or noisy-or semantics and

nodes of type "deterministic." SamIam also understands the Genie definitions of nodes as

"target," "observation", and "auxiliary", and the definition of states as "target" and/or "default",

and Genie sub-models.

II - 4.5.b. Algorithms implemented in SamIam

II - 4.5.b.1. Hugin Algorithm

Hugin Algorithm is among the most efficient methods known for belief updating in Bayesian

networks in the state of the art.

SamIam implements a version of Hugin algorithm that uses terminology different from usual.

This fact and the fact that SamIam code is not available make we do not give more details about

this implementation of the algorithm. However, a more comprehensive description of the usual

Hugin Algorithm is shown in section II - 4.3.

II - 4.5.b.2. Shenoy-Shafer Algorithm

Shenoy-Shafer propagation proceeds as follows[17]. First, evidence is entered into the jointree

through evidence indicators. A cluster is then selected as the root and message propagation

proceeds in two phases, inward and outward. In the inward phase, messages are passed toward

the root. In the outward phase, messages are passed away from the root.

Cluster sends a message to cluster only when it has received messages from all its other

neighbors . A message from cluster to cluster is a table defined as follows:

 Eq. II-12

where is the product of CPTs and evidence tables assigned to cluster .

Once message propagation is finished in the Shenoy–Shafer architecture, we have the following

for each cluster in the jointree:

 Eq. II-13

Let us now look at the time and space requirements of the Shenoy–Shafer architecture. The

space requirements are simply those needed to store the messages computed by Eq. II-12.

Introduction

28

That is, we need two tables for each separator , one table stores the message from cluster

to cluster , and the other stores the message from to . We will assume in our time analysis

below the availability of the table , which represents the product of all CPT and evidence

tables assigned to cluster . This is meant to simplify our time analysis, but we stress that one of

the attractive aspects of the Shenoy–Shafer architecture is that one can afford to keep this table

in factored form, therefore, avoiding the need to allocate space for this table, which may be

significant.

As for time requirements, suppose that we have a jointree with clusters and width . Suppose

further that the table is already available for each cluster , and let us bound the amount of

work performed by the inward and outward passes of the Shenoy–Shafer architecture, i.e., the

work needed to evaluate Eq. II-12 and Eq. II-13.

We first note that for each cluster , Eq. II-12 has to be evaluated times and Equation Eq. II-13

has to be evaluated once, where is the number of neighbors for cluster . Each evaluation of

Eq. II-12 leads to multiplying tables, whose variables are all in cluster . Moreover, each

evaluation of Eq. II-13 leads to multiplying tables, whose variables are also all in cluster

 . The total complexity (since multiplying elements requires multiplications) is then:

 Eq. II-14

which reduces to
 , where

 is a term that ranges from to

depending on the jointree structure.

Given a Bayesian network with variables, and an elimination order of width , we can

construct a binary jointree for the network with the following properties: the jointree has width

 ,and no more than clusters.Hence, we can avoid the quadratic complexity

suggested above by a careful construction of the jointree, although this can dramatically

increase the space requirements.

II - 4.5.b.3. Combination Hugin & Shenoy-Shafer Algorithms

The Hugin and Shenoy–Shafer architectures are two variations on the jointree algorithm, which

exhibit different tradeoffs with respect to efficiency and query answering power[17]. The Hugin

architecture is more time–efficient on arbitrary jointrees, avoiding some redundant

computations performed by the Shenoy–Shafer architecture. This efficiency, however, comes at

the price of limiting the number of queries the Hugin architecture is capable of answering.

SamIam implements a simple algorithm, which retains the efficiency of the Hugin architecture

and enjoys the query answering power of the Shenoy–Shafer architecture.

The combination of the Shenoy–Shafer and Hugin architectures uses zero conscious

tables/potentials. The use of these tables provide a simple way to exploit the efficiency of the

Hugin method, while extending the set of queries that can be answered efficiently. For the price

of a single bit per cluster entry, and some minimal logic operations, all queries answerable using

Shenoy–Shafer propagation can now be answered using Hugin type operations.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

29

For applications that require more than just marginal probabilities, such as local search methods

for MAP and sensitivity analysis, this can produce a significant speed up over the use of Shenoy–

Shafer architecture.

II - 4.5.b.4. Recursive Conditioning Algorithm

Recursive Conditioning, RC, is an any-space algorithm for exact inference in Bayesian networks.

It is driven by a structure known as a dtree, which recursively decomposes a network into two

smaller subnetworks until the subnetworks only consist of a single CPT. The RC algorithm can

then solve each subnetwork independently and merge the localized results together to calculate

the desired probability. Many different dtrees exist for a network, and the way the network is

decomposed dramatically affects the resource requirements. Therefore, SamIam allows the user

to experiment with different dtrees by choosing the elimination order heuristic SamIam uses as

the initial step in creating the dtree. More about this algorithm can be read in [18].

II - 4.5.c. UnBBayes

UnBBayes is a probabilistic network framework written completely in Java. It has both a GUI and

an API with reference, sampling, learning and evaluation. It supports BN, ID, MSBN, OOBN, HBN,

MEBN/PR-OWL, structure, parameter and incremental learning[19].

UnBBayes is an open-source tool, what allows us the implementation of our own code, our own

plug-ins or the modification of the existing code. UnBBayes is a plug-in framework that lets you

add only that plug-ins that you need for your work.

A plug-in consists of a computer program that interacts with the host application of UnBBayes,

to provide specific functionalities. The content of an ordinal UnBBayes plug-in is:

 Plug-in descriptor (XML file)

 Classes (a program)

 Resources (e.g. icons, message files...)

Plug-ins has several benefits, such as reduce the size of each application and organize the system

by means of modularization.

II - 4.5.d. Algorithms implemented in UnBBayes

UnBBayes allows the use of several algorithms. For BN, the most important is the Hugin

Algorithm, which is described below.

II - 4.5.d.1. Hugin Algorithm

The efficiency of belief updating in Bayesian networks is very important for probabilistic

inferences. Establishing an efficient belief-updating algorithm is fundamental to the application

of Bayesian networks. Hugin Algorithm is among the most efficient methods known for belief

updating in Bayesian networks in the state of the art. For this, a more detailed explanation is

given in section II - 4.3.

II - 4.5.e. Genie & Smile

GeNIe is a development environment for building graphical decision-theoretic models. It has

been developed at the Decision Systems Laboratory, University of Pittsburgh. They make it

available to the community to promote decision-theoretic methods in decision support systems.

Introduction

30

GeNIe's name and its uncommon capitalization originate from the name Graphical Network

Interface, given to the original simple interface to SMILE, our library of functions for graphical

probabilistic and decision-theoretic models. GeNIe is an outer shell to SMILE.

GeNIe is implemented in Visual C++ and draws heavily on the MFC (Microsoft Foundation

Classes). This makes it not easily portable, although it runs under one of the most popular

computing platforms: Windows operating systems. GeNIe allows for building models of any size

and complexity, limited only by the capacity of the operating memory of your computer. GeNIe

is a developer environment. Models developed using GeNIe can be embedded into any

applications and run on any computing platform, using SMILE, which is fully portable.

SMILE (Structural Modeling, Inference, and Learning Engine) is a fully platform independent

library of functions implementing graphical probabilistic and decision-theoretic models, such as

Bayesian networks, influence diagrams, and structural equation models. Its individual functions,

defined in SMILE Applications Programmer Interface, allow creating, editing, saving, and loading

graphical models, and using them for probabilistic reasoning and decision making under

uncertainty.

SMILE is a portable library of C++ classes implementing graphical decision-theoretic methods,

such as Bayesian networks and influence diagrams, directly amenable to inclusion in intelligent

systems. Its Windows user interface, GeNIe is a versatile and user-friendly development

environment for graphical decision-theoretic models.

SMILE also provides Java and .NET wrappers for users who want to use SMILE with languages

other than C++. SMILE is equipped with an outer shell, a developer's environment for building

graphical decision models, known as GeNIe. GeNIe is platform dependent and runs only on

Windows computers. SMILE can be embedded in programs that use graphical probabilistic

models as their reasoning engines. Models developed in SMILE can be equipped with a user

interface that suits the user of the resulting application most.

Unlike other tools, GeNIe allows associating Properties to networks and nodes. These properties

can be used to add information to the Bayesian Network that is not directly related to the

probabilistic network but to the real world part modeled in the Bayesian Network.

II - 4.5.f. Netica

Netica is a commercial Bayesian Network tool designed to be simple, reliable, and high

performing. Netica is a powerful, easy-to-use, complete program for working with belief

networks and influence diagrams. It has an intuitive and smooth user interface for drawing the

networks, and the relationships between variables may be entered as individual probabilities, in

the form of equations, or learned from data files (which may be in ordinary tab--delimited form

and have "missing data"). Values or probabilities may be displayed in a number of different

ways, including bar graphs and meters. The knowledge can be transferred between networks by

cutting and pasting, or saved in modular form by creating a library of nodes with disconnected

links.

Netica can perform various kinds of inference algorithms. Given a new case of which we have

limited knowledge, Netica can find the appropriate probabilities for all the unknown variables.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

31

Netica can use influence diagrams to find optimal decisions, which maximize the expected values

of specified variables. Netica can construct conditional plans, since decisions in the future can

depend on observations yet to be made and the timings and inter-relationships between

decisions are considered.

Netica can be used to transform a network in a number of ways. Variables that are no longer of

interest may be removed without changing the overall relationships between the remaining

variables (technically, the probabilities are "summed out" when we don't know the variable's

value, and a more complex operation is used when we do). Probabilistic models may be explored

by such operations as reversing individual links of the network, removing or adding causal

influences, optimizing one decision at time, etc. These operations may be done with just a click

of the mouse, which makes Netica very suitable for easy exploring, and for teaching belief

network and influence diagram concepts.

II - 4.5.g. File formats used by inference engines

Each inference engine has been developed to deal with different file formats when saving or

loading Bayesian networks. This makes information sharing between them more difficult or use

different inference engines for different parts of the same project.

In this point, a recapitulation of those file formats used is done. It is needed to know what

inference engines we are going to use before start developing our project because, although

conversion between different file formats is not difficult at in general, little information could be

lost in the conversion.

The file formats that each inference engine can manage can be read in the following table.

Inference Engine Data Formats

SamIam .net (full supported), .dsl, .xdsl, .dsc, .dne, .erg

UnBBayes .net, .xml (XMLBIF)

Genie & Smile .xdsl, .dsl, .erg, .dne, .dsc, .net, .dxp

Netica .dne, .neta, .net, .dxp, .dsc, .ergo

Table II-1 Inference engines data formats

Hugin [.net] Format used by Hugin (Hugin is Copyright © Hugin Expert A/S).

XDSL [.xdsl] This is new XML based native format of the library. For this reason, it is the one

that best supports all the features included in SMILE, and is the one we recommend.

DSL [.dsl] This is the Genie &Smile old native format of the library, which is not supported any

more. For this reason, all the previous users are strongly advised to switch to new XDSL format.

Ergo [.erg] Format used by Ergo (Ergo is a trademark of Noetic Systems Incorporated). This

simple format only supports random variables. You will lose any other information that your

network contains when saving using this format.

Introduction

32

Netica [.dne] Format used by Netica for net files in text form (Netica is a trademark of Norsys

Software Corp).

Neta [.neta] Format used by Netica for net files in binary form (Netica is a trademark of Norsys

Software Corp).

Microsoft MSBN [.dsc] Format used by Microsoft Bayes Networks (Microsoft MSBN32 API

Library Copyright Microsoft Corp.).

KI [.dxp] Format used by DXpress (DXpress is a trademark of Knowledge Industries).

II - 4.6. Directed Cycles in Graphical Models

As we know, Bayesian networks are directed acyclic graphical models. Bayesian networks cannot

handle directed cycles in the model[4]. This makes sense because Bayesian networks are cause-

effect models. If there is a directed cycle, the effect becomes the cause and the inference

process will be stuck into an infinite loop or some conflicts.

As mentioned before, Bayesian Networks cannot handle cycles, so we need a way to break those

cycles but still keep the system characteristics and perform consistent inference reasoning.

The first method is to break the directed cycle at one point. For example, if the edge connecting

A and F is deleted, the two directed cycles shown in Figure II-6 are broken and the results are

shown in Figure II-7. However, by doing that, the information between nodes connected with

that edge is lost.

A B C

D E F

A B C

D E F

Figure II-6 Example of a Directed Cycle in Bayesian Networks

Figure II-7 First Method. Breaking the directed cycle

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

33

The second method is to change the direction of one edge in a directed cycle if the directions of

some edges are not very important. For example, if the direction of edge between A and F is

changed from A to F, there is no directed cycle anymore and the result is shown in Figure #. This

method is simple and does not complicate the existed Bayesian network. However, this method

is based on the assumption that cause-effect relationship is not significant between two nodes

and is limited to certain applications.

The third method is to add an intervention (an instantiation of a node) to break the cycle. As we

know, in the sum-product algorithm for discrete Bayesian network inference, when a node is

explicitly instantiated to a specific value, the conditional probability function will be

removed from the sum-product equations. Viewing this removing action graphically, the edges

into this specifically instantiated node are deleted from the graphical model. For example, in the

simple Bayesian network shown, if node is instantiated to a specific value, the mass probability

function will be removed from the sum-product equation:

 .

Viewing that removal graphically, the directed edge from F to A be removed and the resulted

graph is shown in Figure II-9.

Compared with the first method, the resulted graph looks as the same. However, the third

method does not lose any information and it requires a node being instantiated. If this node

cannot be instantiated, other nodes in the cycle can be candidates to be instantiated and will

break the cycle as well. If no node can be instantiated (observed) in a directed cycle, the third

method cannot be used. By using the third method, it simplifies the model and keeps the system

internal cause-effect relationships.

A B C

D E F

A B C

D E F

Figure II-8 Second Method. Changing the direction of one edge

Figure II-9 Third Method: Adding an intervention

Introduction

34

II - 5. Multiply Sectioned Bayesian Networks in detail

Bayesian networks (BNs) provide a coherent and effective framework for decision support or

diagnosis systems that must function with uncertain knowledge. However, as the problem

domains become larger and more complex, modeling a domain as a single BN and conducting

inference in it becomes increasingly more difficult and expensive.

Multiply Sectioned Bayesian Networks (MSBNs) provide one alternative to meet this challenge

by relaxing the single BN paradigm. The framework allows a large domain to be modeled

modularly and the inference to be performed distributively, while maintaining the coherence.

The framework can be applied under the single agent paradigm as well as the multi-agent

paradigm. It supports hierarchical model based diagnosis and modeling large systems with the

object-oriented paradigm.

A MSBN is a set of subnetworks that form a concrete tree structure and share information

sharing some nodes between them. Each one of these subnetworks can be contained in any

program. In our work, we will associate the concept of program with the Intelligent Agent

concept. In artificial intelligence, an intelligent agent (IA) is an autonomous entity, which

observes and acts upon an environment and directs its activity towards achieving goals.

Although our developed MSBN framework could be used from any other program, we will focus

on agent paradigm to make explanations simpler.

II - 5.1. MSBN Framework

A BN is a triplet , where is a set of domain variables, is a directed acyclic graph

(DAG) whose nodes are labeled by elements of , and is a joint probability distribution (JPD)

over . encodes conditional independencies among variables in .

A form of representation for a BN is Junction Tree (JT) (see II - 4.3). In a JT, each cluster consists

of a subset of the domain variables. Each cluster acts as a unit / object in message passing during

inference. Similarly, a MSBN partitions a large domain into a Hypertree of some natural

subdomains. Such subdomains become the units for distribution. A Hypertree can be probed to

be a JT.

MSBN partitions a large domain into a Hypertree, which is analogous to a JT of a single BN. This

is the first level of application of the JT representation in MSBNs. On the other hand, a cluster in

a JT has no internal structure. The belief over a cluster is represented as a potential (non-

normalized probability distribution) over all variables in the cluster. Since a subdomain in a large

domains itself large in general, representing it as a cluster is neither feasible nor necessary.

Instead, a MSBN represents each subdomain as a Bayesian network called a subnetwork.

A MSBN is a collection of Bayesian subnetworks that together defines a BN. represents

probabilistic dependence of a total universe partitioned into multiple subdomains each of which

is represented by a subnetwork.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

35

In an MSBN , a set of Bayesian subnetworks populates a total universe

of variables. Each subnet has knowledge over a subdomain encoded as a Bayesian

subnetworks . The collection of local DAGs encodes subnetwork’s

knowledge of domain dependencies. Local DAGs should overlap and be organized into a

Hypertree. Adjacent subnetworks exchange information over their overlapped variables.

The partition should satisfy certain conditions to permit coherent distributed inference. One

condition requires that nodes shared by two subnets form a d-sepset, as defined below.

Let be two graphs. The graph is

referred to as the union of and , denoted by .

In a JT of a single BN, a message sent by a cluster to an adjacent cluster is a belief table over

their intersection , called sepset (which labels the link between the clusters). Like a cluster

in a JT, a sepset has no internal structure. In a large domain, the intersection of two subdomains,

called a d-sepset, is also large in general. Hence, more compact representation of the d-sepset is

desired. The MSBN framework represents each d-sepset also as a JT, called a linkage tree, which

allows a more efficient representation of the message passed between subdomains. This is the

third level of application of the JT representation in MSBNs.

D-Sepset

A d-sepset is the set of nodes that are shared between two subnetworks whose parents are in

one of the two subnetworks. A more formal definition can be read above.

Let be two DAGs such that is a DAG. Theintersection

 is a d-sepset between and if for every node with its parents in ,

either or . Each node is called a d-sepnode.

In Figure II-11 above, a example of d-Sepset is shown.

5part2c

5part4c

5part5c 5part3c

5part1c

var_0

var_1 A

B

A

B

var_2 C

D

var_5

E C

D

var_4

var_3

F

var_6

E C F

G

H

var_9 var_8

var_7

var_11

var_12

var_10

G

H

Figure II-10 A notional MSBN called 5partc

Introduction

36

A d-sepset is a sufficient information channel for passing all relevant evidence from one subnet

to another. Formally, a pair of subnets is conditionally independent given their d-sepset.

Hypertree MSDAG

Just as the structure of a BN is a DAG, the structure of a MSBN is a multiply sectioned

DAG(MSDAG) with a Hypertree organization. That is to say, subnetworks in MSBN M are

organized in a tree structure, where each subnetwork is known as a Hypernode and each

existing interface between two Hypernodes is known as a Hyperlink or Linkage. In this graph,

nodes will be Hypernodes, and edges will be hyperlinks. Graphically, a Hyperlink separates the

Hypertree MSDAG into two subtrees. Semantically, this corresponds to the conditional

independence given the d-sepset.

As it is seen, we can use subnetwork or Hypernode interchangeably, as well as Linkage instead

Hyperlink.

A Hypertree MSDAG , where each is a DAG, is a connected DAG constructible by the

procedure described below.

Building a Hypertree MSDAG

Start with an empty graph (no node). Recursively add a DAG , called a Hypernode, to the

existing MSDAG
 subject to the constraints:

 [d-sepset] For each , is a d-sepset when only and are

considered.

 [local covering] There exists such that, for each , we

have .

For an arbitrarily chosen such , is the Hyperlink between and which are said to be

adjacent.

It can be proven that if each Hypernode of a Hypertree MSDAG is replaced by the cluster

and each Hyperlink between and is replaced by the d-sepset , then the resultant isa JT.

d-sepset

d-sepset

d-sepset E C F

var_9 var_8

var_7

Figure II-11 D-Sepset examples

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

37

Public Nodes

Nodes shared between two Hypernodes are known as public nodes or shared nodes. A more

formal definition is shown below.

Let be a Hypernode in MSBN , and let have a subset of nodes , which are also part of

other Hypernodes. Then, each node contained in this subset of shared nodes is known as a

public node.

Hypernode

A Hypernode or Subnetwork is a Bayesian Network. The only particularity of this Bayesian

Network is that it is related to other Hypernode by mean of Hyperlink. A Hypernode is part of

the Hypertree of the MSBN and it has necessarily to be connected to at least other Hypernode

through a Hyperlink.

Link

A link is an association between two cliques from different Hypernodes, which contain the same

public nodes. These public nodes shared between both cliques need to form a d-sepset.

A link has three cliques that identify it: host0, clique and host1. Cliques host0 and host1 are

cliques in the subnetworks associated by this link. Clique clique is the d-sepset build from the

intersection of host0 and host1.

Let be a Hypernode descendant from Hypernode in the Hypertree. Let be a clique in ,

and be a clique in . Let be a d-sepset between and , whose nodes are all

contained in both and . Then, there exists a Link
 that has as clique of the link and

and as cliques host1 and host2 respectively, according to the Hypertree offspring.

Hyperlink

A Hyperlink or Linkage establishes a link between two Hypernodes. Every Hypernode in the

Hypertree (in the MSBN) is connected directly or indirectly to any other Hypernode through one

or more than one Hyperlink respectively. Each Hyperlink serves as the information channel

between subnetworks connected. It is referred to as a subnetwork interface.

Let be a Hypernode direct descendant (child) from Hypernode in the Hypertree. Then,

there exists a Hyperlink , which has all existing links
 between and in its link list.

The parent Hypernode is called the net0 of this Hyperlink and child Hypernode is called

the net1 of the Hyperlink .

Root Hypernode

5part5c

5part4c

5part3c 5part2c 5part1c

Figure II-12 Hypertree MSDAG for the notional MSBN

Introduction

38

Linkage Tree

All d-sepsets in the links of a Hyperlink are associated forming a junction tree known as Linkage

Tree.

Let
 be the set of d-sepset cliques belonging to all existing links

 in Hyperlink . Since

those links
 belong to Hyperlink , set of d-sepset cliques

 has a Junction Tree

structure.

To summarize, the process necessary to allow inference through a MSBN and communication of

beliefs between its Hypernodes, require a fairly complex structure. This structure divides the

MSBN in Hypernodes or subnetwork, which are connected through Hyperlinks or Linkages.

Linkages are made of the public nodes of the subnetworks, and are divided in Links according to

the structure of cliques present in each Hypernode.

II - 5.2. MSBN Phases

The process of use of a MSBN is divided in three well-differentiated phases:

1. Subnetworks Load Phase

2. Compilation Phase

3. Query phase

Load phase (Phase 1) is a trivial one and will be shown in short. Nevertheless, Compilation Phase

(Phase 2) is the focus of the following section II - 5.3 in which it is explained in more detail.

Load phase involves reading a file with the information about the corresponding Bayesian

network/s. With this information, a new object representing a Bayesian Network will be

constructed. The type of file and the way of loading the subnetwork depend on the program

used as we have described in section II - 4.5.

The number of files to read depends on the architecture used. In single-agent architecture (II -

5.4) all subnetworks are loaded at the same time while, in multi-agent architectures (IV - 2.1, IV -

2.2) each agent load only the subnetwork/s that it own.

II - 5.3. Compilation process

The compilation of the MSBN allows carrying out inference and queries. Similarly as in a simple

BN, some processes are needed to be done before perform inference. Those processes are, in

summary, the following:

1. Build Hypertree

2. Moralize

3. Triangulate

4. Compile Junction Tree

5. Make Linkage Tree

6. Initialize Beliefs

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

39

These processes can vary a little depending on the distributed architecture. However, the role

they have is the same for all architectures. Now a more detailed explanation of these processes

is given. Only the theory is shown in this section. For a more programmatic detailed explanation,

it can be seen sections II - 5.4, IV - 2.1 and IV - 2.2, according to each architecture.

II - 5.3.a. Build Hypertree

To build the Hypertree of the MSBN is assigning the parents and adjacent subnetworks to each

subnetwork resulting in a Hypertree structure (see II - 5.1). It is needed to be done in a

centralized way. A subnetwork is arbitrary selected as root Hypernode. At the beginning, only

the root subnetwork belongs to the Hypertree. Then, recursively, linkages are assigned between

the subnetwork that is not in Hypertree yet and has the largest amount of nodes in common

with another subnet that is already in Hypertree.

Then, the following loop is executed:

II - 5.3.b. Moralize

A V structure is formed when a node has two parent nodes. An example of V structure is shown

in subnetwork 5part2c in Figure II-13. Thus, due to V structure, if evidences of node var_2 are

fixed, probabilities of A’s states will change if the probabilities of B’s states change. A fill-in is an

undirected arc that indicates dependence between two nodes. In Figure II-13, two fill-ins can be

seen between var_0 and var_1, and between A and B, in subnetworks 5part1c and 5part2c

respectively.

The first action a subnetwork needs to do to allow moralization is local moralization. That is, look

for all V structures and add corresponding fill-ins.

Code II-1 Hypertree Building Loop

while (Not all subnetworks in Hypertree) do

 Calculate the greatest possible d-sepset between a

subnetwork that is not in Hypertree yet and another that

belongs to Hypertree.

 Create a new Linkage between subnetworks chosed.

 Set the parents and adjacent subnetworks of both

subnetworks respectively.

end while

5part2c 5part1c

var_0

var_1 A

B

A

B

var_2

Figure II-13 Moralization Example. V structure.

Introduction

40

Then, each fill-in is sent to each subnetwork that has the two nodes linked by the fill-in shared. A

subnetwork that receives a fill-in should add this to its Markov arcs list. The Markov arcs list is a

list with all arcs added during moralization and triangulation pointing dependencies non-

explicitly shown in the original BN. In the example shown in Figure II-13, subnetwork 5part2c

need to send a fill-in between to subnetwork 5part1c.

II - 5.3.c. Triangulate

Triangulation, as described in II - 4.3, is a process where an elimination order for the nodes of a

subnetwork is defined. The only condition to allow the elimination of a node is that all its

adjacent nodes are adjacent to each other. If two nodes adjacent to a node are not adjacent to

each other, a new fill-in needs to be added to the Markov Arcs List (see II - 5.3.b) of the

subnetwork. If the nodes linked by the fill-in are shared with another subnetwork, this fill-in

needs to be sent to the other subnetwork to be added.

For example, as we see in Figure II-14, if , an adjacent of , is not adjacent of , another

adjacent of , then a new fill-in between needs to be added in subnetwork 5part2c. This

new fill-in needs to be sent and added to subnetwork 5part3c since and are shared nodes.

II - 5.3.d. Compile Junction Tree

To compile the Junction Tree, a subnetwork needs to associate a separator or clique to each

node and initialize tables of separators and cliques as well as marginal probabilities in each node.

This is a very condensed description that can be extended with details in sections II - 5.4, IV - 2.1

and IV - 2.2.

II - 5.3.e. Make Linkage Tree

By Making the Linkage Tree of a MSBN, we mean make the Linkage Tree of each Linkage in the

MSBN. This process involves the creation of a new JT assigned to each Linkage. In each Linkage, a

5part2c

5part3c

A

B

var_2 C

D

var_5

E C

D

var_4

var_3

Figure II-14 Triangulation Example. Shown moralization fill-ins in red and triangulation fill-in in green.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

41

Link is created between each corresponding cliques. To each link, a host0, clique and host1

cliques are assigned as defined in section II - 5.1. Then, tables in the cliques in the Linkage are

initialized. For more details about this process, see sections II - 5.4, IV - 2.1 and IV - 2.2.

II - 5.3.f. Initialize Beliefs

Before performing inference in a MSBN, an initialization of beliefs in all subnetworks is needed.

Each subnetwork, as BN that it is, has initial beliefs that do not need to be the same as initial

beliefs of another neighboring network with shared nodes. To maintain coherence in the MSBN,

a common initialization of common beliefs is needed, which can be achieved by many different

algorithms.

The algorithm of initialization used in our work is the same used in UnBBayes MSBN Framework

(see II - 5.4). It is that, as is done in Bayesian networks, we need a two-phase initialization:

COLLECT-EVIDENCE and DISTRIBUTE-EVIDENCE. A simple representation of this process for a

three-subnetwork MSBN is shown in the collaboration diagram of Figure II-15. The subnetwork

subnetwork_1 has the role of root subnetwork in this example.

Figure II-15 Belief Initialiazation algorithm. Collaboration Diagram

In MSBN Framework, we obtain different results from initialization depending on which

subnetwork initiate the loop (the root subnetwork). This is a convention arbitrary chosen. Other

conventions or techniques of initialization can be chosen, but they are beyond the scope of this

project.

II - 5.4. Synchronous architecture for Single-Agent MSBN

Probabilistic reasoning in BNs, as commonly applied, assumes a single-agent paradigm. That is, a

single processor accesses a single global network representation, updates the joint probability

distribution over the network variables as evidence becomes available and answers queries.

This architecture is designed to work in a single machine. All of the updates are made directly, by

changing the properties in the corresponding object. In fact, several subnetworks share the

same nodes, which are the same object instances.

In this architecture, the greatest advantage in comparison with a simple BN is the modularity

offer by the ability of subnetworks to be interchanged or replaced. The modularity improves

inference efficiency in a single user oriented system in a large problem domain.

Off-line time

The communication of beliefs in this architecture is achieved in a synchronous way by means of

recursive calling to the corresponding methods. That means each subnetwork is waiting while

Introduction

42

this updating loop is performed. More about distribution of beliefs can be read in section II -

5.3.f.

The solution proposed to avoid this behavior can be seen in section IV - 2.2.

II - 6. Distributed Communication Frameworks

This project bases its communications in a communication interface, which can be implemented

by multiple types of communication frameworks. Thus, the results and architectures designed

are independent form the communication framework used.

In fact, both distributed architectures designed have different communication requirements.

 The first architecture, Synchronous one, needs a communication framework that

supports synchronous operations. That is, a framework that supports Remote Procedure

Call (RPC). It has been manually implemented by the following means:

o Direct method calling to emulate communication in an only computer.

o Socket based communication that allows the calling of methods remotely

according to the message passed. In addition, some objects can be serialized to

be sent.

o Jadex Agent Platform, which implements itself serializing methods for messages.

 The second architecture, Iterative one, needs a communication framework that supports

asynchronous message sending. This means that, when a message arrives, a simple

operation (normally queue the information conveniently) needs to be done. It has been

achieved using an already developed communication framework:

o JGroups, which is a reliable group communication toolkit written entirely in Java.

It is based on IP multicast.

Although developed architecture is independent from communication framework, there

are several services provided by JGroups toolkit that are not easily found in other

communication frameworks, such as:

 Notification about joined / left /crashed members

 Point-to-multipoint and Point-to-point messaging

 State transmission

II - 6.1. JGroups

 JGroups is a toolkit for reliable multicast communication. It can be used to create groups of

processes whose members can send messages to each other. The main features include

 Group creation and deletion. Group members can be spread across LANs or WANs

 Joining and leaving of groups

 Membership detection and notification about joined/left/crashed members

 Detection and removal of crashed members

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

43

 Sending and receiving of member-to-group messages (point-to-multipoint)

 Sending and receiving of member-to-member messages (point-to-point)

Flexible Protocol Stack and Reliable Communications

 The most powerful feature of JGroups is its flexible protocol stack, which allows developers to

adapt it to exactly match their application requirements and network characteristics. Besides

unicast communications, JGroups extends reliable unicast message transmission (like in TCP) to

multicast settings. As described above it provides reliability and group membership on top of IP

Multicast. Since every application has different reliability needs, JGroups provides a flexible

protocol stack architecture that allows users to put together custom-tailored stacks, ranging

from unreliable but fast to highly reliable but slower stacks.

Over implemented protocols, reliable communications are achieved including

 lossless transmission of a message to all recipients (with retransmission of missing

messages)

 fragmentation of large messages into smaller ones and reassembly at the receiver's side

 ordering of messages, e.g. messages m1 and m2 sent by P will be received by all

receivers in the same order, and not as m2, m1 (FIFO order)

 atomicity: a message will be received by all receivers, or none.

II - 6.2. Hazelcast

Hazelcast is an open source clustering and highly scalable data distribution platform for Java,

which is:

 Lightning-fast; thousands of operations/sec.

 Fail-safe; no losing data after crashes.

 Dynamically scales as new servers added.

 Super-easy to use; include a single jar.

Hazelcast allows you to easily share and partition your application data across your cluster.

Hazelcast is a peer-to-peer solution (there is no master node, every node is a peer) so there is no

single point of failure.

Hazelcast is simple. JVMs that are running Hazelcast will dynamically cluster. Although by default

Hazelcast will use multicast for discovery, it can also be configured to only use TCP/IP for

environments where multicast is not available or preferred. Communication among cluster

members is always TCP/IP with Java NIO beauty. The only we need to use Hazelcast is just

adding the hazelcast.jar into our classpath and start coding.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

45

III - Analysis

This chapter discusses the analysis process that has been followed to obtain the system

requirements. This will show, firstly, the objectives and scope of the project to properly frame the

work area.

After presenting the scope of the project, this section shows the use cases and requirements

arising from these.

Finally, a brief comparison of the tools presented in section II - is done, showing the reasons why

the tools we use in this project are chosen.

Analysis

46

III - 1. Scenario

The solution resulting from this project can be used in numerous scenarios to be able to deal

with uncertainty in a distributed way. That is the reason why, in this section we will present a

general system that can operate reasoning independently of the scenario in which it is situated.

For a more specific description in a concrete scenario, the case study presented in section VI -

can be seen.

III - 2. Use Cases

This section identifies general use cases of normal use in the system, in order to get a full

specification of expected usage of the system with the aim of establish a complete list of

requirements.

Below, the actors identified within the use cases are presented. Later, by mean of use case

descriptions and UML diagrams of them, we establish the relationships between the actors and

the system.

III - 2.1. Actors

Here we present the actors identified within the use cases that are shown below.

Actor Identifier Name Description

ADM Administrator It is responsible for starting, loading and
shutdown of each node of this reasoning
system. Since this is a distributed system,
there could be several ADM, each of which is
responsible of a node of this system.

USR User It is responsible for managing and operating
of the system. It can introduce new
information about the state of the system or
the results of other sources of knowledge,
listen to changes in the knowledge of this
reasoning system to be able to produce some
reactions to these events or make queries or
request any information about the collected
knowledge at any time, independently from
belief updates.

Table III-1 Actors

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

47

III - 2.2. Use Case 1: Loading and operation of the MSBN

III - 2.2.a. Description

The ADM responsible for the new Hypernode load it from the information received or loaded

from a file. Then, the USR takes the control of this Hypernode and perform compilation and

initialization of the Hypernode. The USR is the responsible for the answering of queries about

the beliefs and the state of the compilation of the Hypernode, as well as carrying out the

updating of beliefs or sending them to allow the updating of beliefs of other Hypernodes. At any

moment, ADM can decide to shutdown this Hypernode.

III - 2.2.b. Use Case Specification

UC-1 Loading and operation of the MSBN

Description The system performs the loading of the MSBN and each
Hypernode operates communicating with others and
answering to queries.

Actors ADM, USR

Normal Sequence Loading of Hypernode

Compilation of the Hypernode according to the MSBN

Initialization of the beliefs of the Hypernode according to
adjacent Hypernodes in the MSBN

Receive petitions of belief updating

Update beliefs

Receive queries about beliefs

Receive queries about compilation state

Shutdown this Hypernode

Exceptions Steps from 4 to 7 can be done in different order or even
omitted according to USR needs.

Table III-2 UC-1 Specification

Analysis

48

III - 2.2.c. Use Case Diagram

Figure III-1 Use Case Diagram for UC-1

III - 2.3. Use Case 2: Adaptation of the system

III - 2.3.a. Description

An ADM can decide load a new Hypernode or shutdown an existing one at any time, as we saw

in UC-1. Thus, the ADMs that are responsible for all other Hypernodes have to adapt the

configuration of the MSBN to changes occurred. That is, to adapt the MSBN to a fallen

Hypernode, to adapt the MSBN to an appeared Hypernode or to adapt two previously existing

MSBN to be joined into an only MSBN. Only in the case that a Hypernode is isolated, the URS is

the responsible for the adaptation of this Hypernode to the situation.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

49

III - 2.3.b. Use Case Specification

UC-1 Adaptation of the system

Description During the whole time the system is running, many events can
happen such as the appearing or disappearing of a Hypernode.
Since the structure of the MSBN can be affected, adaptation
needs to be done by each Hypernode.

Each ADM is responsible for the adaptation to the falling or the
appearing of a Hypernode, as well as to the joint of two MSBNs
into an only MSBN if it becomes possible. On the other hand,
USR is responsible for the adaptation of the Hypernode to an
isolated situation.

Actors ADM, USR

Normal Sequence Adaptation to a fallen node

Adaptation to an appeared node

Adaptation to an isolated node

Adaptation to the joint of two MSBNs into an only MSBN

Exceptions The order is not relevant in this use case.

Table III-3 UC-2 Specification

III - 2.3.c. Use Case Diagram

Figure III-2 Use Case Diagram for UC-2

Analysis

50

III - 3. Requirements

This section presents the requirements of the system obtained through the use cases presented

and the global scenario.

Each requirement is presented in a table, which contains:

 Identifier. An unique Identifier for the requirement. It is expressed in the format:

o FR-n: Functional requirement number ‘n’.

o NFR-n: Non-functional requirement number ‘n’.

 Title. A short name for the requirement.

 Description. A detailed specification of the features that the system should satisfy.

 Priority. Degree of need for meet this requirement. Its value can be one of the following:

o Essential. It is mandatory for the correct functioning of the system.

o High. It could be satisfied partially, but it is highly recommended.

o Medium. Optional requirement, which could improve the quality of the system.

o Low. Minor requirement which, if met, would add little improvements to the

system that may be undetectable by the user.

 Related use cases. Specifies those use cases that, after an detailed analysis, have result

on this requirement.

 Related requirements. Shows those requirements with which this requirement is

related.

III - 3.1. Functional Requirements

FR-1 Load a MSBN Hypernode

Description The system should be capable of perform the loading of all
Hypernodes of the MSBN. It can be achieved from different ways,
such as load from files, load from received messages or load from
the ontology of an agent.

Priority Essential

Related use cases UC-1

Related requirements FR-4, FR-6

Table III-4 Load a MSBN Hypernode

FR-2 Compile a MSBN Hypernode

Description Each Hypernode should be capable of perform compilation.

Priority Essential

Related use cases UC-1

Related requirements FR-5, FR-12

Table III-5 Compile a MSBN Hypernode

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

51

FR-3 Sending information

Description Each Hypernode should be capable of send all information
required for other Hypernodes to compile. It should be capable of
select only those destination Hypernode that need the information.

Priority Essential

Related use cases UC-1

Related requirements FR-4, NFR-1, NFR-3

Table III-6 Sending information

FR-4 Receiving messages

Description Each Hypernode should be capable of use properly information
received from other Hypernodes.

Priority Essential

Related use cases UC-1

Related requirements FR-3, NFR-3

Table III-7 Receiving messages

FR-5 Recompilation of a Hypernode

Description After the reception of several types of messages, each Hypernode
should be capable of return to a lower step of the compilation. This
should be done without losing data or affecting the normal
operation of the system.

Priority High

Related use cases UC-1

Related requirements FR-2, FR-8, FR-9, FR-10, FR-11

Table III-8 Recompilation of a Hypernode

FR-6 Stopping a Hypernode

Description Each Hypernode should be capable of stop its operation. This
action can be launched by the same Hypernode or by an external
agent.

Priority Medium

Related use cases UC-1

Related requirements FR-1

Table III-9 Stopping a Hypernode

Analysis

52

FR-7 Verifying the non-existence of cycles

Description The system should be capable of verify if there are any cycles in
the global BN, throwing an exception in that case. In addition, it
should inform of the correction of the graph before compilation
finishes.

Priority Low

Related use cases UC-1, UC-2

Related requirements

Table III-10 Verifying the non-existence of cycles

FR-8 Adaptation to an isolated Hypernode

Description An isolated Hypernode should be capable of reson using all
information it has.

Priority Low

Related use cases UC-2

Related requirements FR-5, NFR-10

Table III-11 Adaptation to an isolated Hypernode

FR-9 Adaptation to an appeared Hypernode

Description After the apparition of a new Hypernode, all Hypernodes in the
MSBN should adapt their structures to the new situation.

Priority Essential

Related use cases UC-2

Related requirements FR-2, NFR-10

Table III-12 Adaptation to an appeared Hypernode

FR-10 Adaptation to a fallen Hypernode

Description Afther the fallen of an already existing Hypernode, all Hypernodes
in the MSBN should adapt their structures to the new situation.

Priority High

Related use cases UC-2

Related requirements FR-5, NFR-10

Table III-13 Adaptation to a fallen Hypernode

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

53

FR-11 Adaptation to the join of two MSBNs

Description When the MSBN has been split into several MSBN, after the
apartion of the joining Hypernode, the MSBNs should be capable of
merge into one again.

Priority Medium

Related use cases UC-2

Related requirements FR-5, FR-12, NFR-10

Table III-14 Adaptation to the join of two MSBNs

FR-12 Split an MSBN

Description When some existing Hypernodes in an MSBN cannot be connected,
the system should be capable of operate as if there were several
separated MSBNs.

Priority Medium

Related use cases UC-2

Related requirements FR-5, FR-11, NFR-10

Table III-15 Split an MSBN

III - 3.2. Non-Functional Requirements

NFR-1 Coherence and consistency

Description The system should be capable of maintain coherence and
consistency during the whole reasoning process. In the case of
Iterative architecture, the requirement of concistency is temporary
lower.

Priority Essential

Related use cases UC-1, UC-2

Related requirements FR-3

Table III-16 Coherence and consistency

NFR-2 Handle uncertainty

Description The system should be capable of handle uncertainty inherent in all
complex environments.

Priority Essential

Related use cases UC-1, UC-2

Related requirements

Table III-17 Handle uncertainty

Analysis

54

NFR-3 Tolerant to communication failures

Description The system should be capable of be tolerant to communication
failures. This can be done by the using of a framework that provide
this feature.

Priority High

Related use cases UC-1, UC-2

Related requirements FR-3, FR-4, NFR-9

Table III-18 Tolerant to communication failures

NFR-4 Incomplete data reasoning

Description The system should be capable of offering a coherent result even
with incomplete data set.

Priority Essential

Related use cases UC-1, UC-2

Related requirements

Table III-19 Incomplete data reasoning

NFR-5 Scalability

Description The system should be scalable enough to be useful in a real
scenario with a high quantity of nodes.

Priority Essential

Related use cases UC-1, UC-2

Related requirements NFR-6

Table III-20 Scalability

NFR-6 Privacy

Description The system should be capable of keep private data in Hypernodes
sharing only public information. This is also important for the
scalability of the system.

Priority Essential

Related use cases UC-1, UC-2

Related requirements NFR-5

Table III-21 Privacy

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

55

NFR-7 Autonomy

Description The system should be autonomous. Each Hypernode should be an
independent unit capable of reason itself.

Priority Essential

Related use cases UC-1, UC-2

Related requirements NFR-8

Table III-22 Autonomy

NFR-8 Distributed and decentralized

Description The system should have a set of Hypernodes that are all equal.
Operations are distributed across different parts of the systems.

Priority High

Related use cases UC-1, UC-2

Related requirements NFR-7

Table III-23 Distributed and decentralized

NFR-9 Asynchronous communications

Description The system should have asynchronous communications. A
message should be attended at any time.

Priority High

Related use cases UC-1, UC-2

Related requirements NFR-3

Table III-24 Asynchronous communications

NFR-10 Adaptability

Description The system should adapt to each scenario and situation.
Hypernodes should be capable of adapt the structure of the MSBN
(Hypertree) to each situation.

Priority High

Related use cases UC-1, UC-2

Related requirements FR-8, FR-9, FR-10, FR-11, FR-12, NFR-11

Table III-25 Adaptability

Analysis

56

NFR-11 Stability

Description The system should be stable enough to be useful when reasoning
in a real scenario.

Priority Essential

Related use cases UC-1, UC-2

Related requirements NFR-10

Table III-26 Stability

NFR-12 Portability

Description The system should be portable to allow its use in all those devices
that form a FTTH network.

Priority Essential

Related use cases UC-1, UC-2

Related requirements

Table III-27 Portability

NFR-13 Maintainability

Description The system should be maintainable to allow future work and
modifications over the developed framework.

Priority Essential

Related use cases UC-1, UC-2

Related requirements

Table III-28 Maintainability

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

57

III - 3.3. Requirements Summary

In this section, a summarizing table (Table III-29) with requirements and priorities is shown.

Id Title Priority

FR-1 Load a MSBN Hypernode Essential

FR-2 Compile a MSBN Hypernode Essential

FR-3 Sending information Essential

FR-4 Receiving messages Essential

FR-5 Recompilation of a Hypernode High

FR-6 Stopping a Hypernode Medium

FR-7 Verifying the non-existence of cycles Low

FR-8 Adaptation to an isolated Hypernode Low

FR-9 Adaptation to an appeared Hypernode Essential

FR-10 Adaptation to a fallen Hypernode High

FR-11 Adaptation to the joing of two MSBNs Medium

FR-12 Split an MSBN Medium

NFR-1 Coherence and consistency Essential

NFR-2 Handle uncertainty Essential

NFR-3 Tolerant to communication failures High

NFR-4 Incomplete data reasoning Essential

NFR-5 Scalability Essential

NFR-6 Privacy Essential

NFR-7 Autonomy Essential

NFR-8 Distributed and decentralized High

NFR-9 Asynchronous communications High

NFR-10 Adaptability High

NFR-11 Scalability Essential

NFR-12 Portability Essential

NFR-13 Maintainability Essential

Table III-29 Requirements summary

Analysis

58

III - 4. Tools comparison

III - 4.1. Reasoning Techniques Comparison

III - 4.1.a. Comparison of reasoning techniques

In this section, we analyze data shown in II - 2. As we have seen, each technique presents its

strengths and its weaknesses. To solve the problem stated in section VI - and satisfy

requirements showed in section III - 3, we sum up the requirements as follows. We want to find

one reasoning technique that allows us to reason with the following requirements:

1. To maintain coherence and consistency in the reasoning using a distributed approach.

2. To handle uncertainty inherent in all complex environments.

3. To be tolerant with communications failures.

4. To keep private data in local nodes sharing only public information.

5. To offer a coherent result even with uncompleted data set.

In Table III-30, a comparison between most relevant reasoning techniques with a distributed

approach about this features is shown[4]. As result of this comparative table, we can deduce

that Bayesian inference is the technique that meets better the requirements listed above.

Reasoning Technique Rule systems CBR FuzzyLogic Bayesian
inference

Coherence/Consistency Good Good Bad Good

Handle uncertainty Null Null Good Good

Failures tolerance Medium Bad Medium Medium

Maintain private data Good Medium Good Medium

Uncompleted data set Bad Good Medium Good

Table III-30 Reasoning techniques comparison

As we see in Table III-30 the best choice is Bayesian Inference. Bayesian reasoning allows

handling uncertainty while maintaining coherence and consistency.

Bayesian reasoning is not itself a failure tolerant technique. Thus, architecture used should be

responsible for failure handling and recovering techniques.

Bayesian reasoning can maintain data as private if we implement an architecture that allows it. It

is not a characteristic of the system, but can easily be achieved. Reasoning when the data set is

incomplete is allowed by several techniques.

As we see, Bayesian reasoning is the technique that had better satisfy requirements stated. In

consequence, we base this whole project on this reasoning technique.

Another option would be Fuzzy Logic, due to handling uncertainty is our main requirement. In

the following section, we carry out a comparison between both techniques to clarify why this

decision has been made.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

59

III - 4.1.b. Comparison: Fuzzy Logic vs. Bayesian Reasoning

When dealing with uncertainty, there are several options to build computational models. We

have chosen two of them, which we consider the most relevant ones. Concretely we would like

to compare two of these models: Bayesian Networks and Rule-Based Expert Systems with

uncertainty factors. In our work, we have developed over Bayesian Network model. That is why

we would like to show if a Rule-Based Expert System implementation would be viable.

As platforms to implement those models, in this comparison, we choose Genie & Smile as a

Bayesian Network Inference Engine due to its beautiful and easy graphic interface and Fuzzy-

Clips as a Rule-Based Expert System with uncertainty factors, due to it is easy-to-use.

In the case study presented in section VI - we have developed several Bayesian Networks that

work and solve mainly the problem.

Now, we would like to see if an implementation of this system by using a Rule–Based Expert

System. To make a comparison, we have implemented a little part of this Bayesian Network in a

FuzzyClips code. This Bayesian Network is shown in Figure III-3.

III-3 Bayesian Network for the comparison between Fuzzy clips and Bayesian networks

This is only a part of a bigger Bayesian Network, and only a part of the network showed will be

develop in FuzzyClips code. Only the nodes with two states will be included in our code because,

as we see below, the work needed to implement nodes with more states grows exponentially.

For each node’s parent possible state, we have to add a FuzzyClips rule. Then, when asserting

facts, inference will be performed.

The developed FuzzyClips code is showed below (Code III-1). Resulting facts from the inference

for the facts inserted at the end of the code, are shown in Code III-2. Finally, the equivalent

resulting Bayesian Network after perform inference with the same evidence (fact) is shown in

Figure III-4.

Analysis

60

Code III-1 Fuzzy Clips vs Bayesian Networks comparison

FuzzyClips code

;---

; ProviderHANCluster.clp

; Model for Magneto Network

; Created by Jesús López Méndez

; 10-Mar-2011

;---

(defrule InternalProviderConnectivityFailureYY

 (ProviderHANProblem yes)

 (OVNManagementBadlyConfigured yes)

=>

 (assert (InternalProviderConnectivityFailure yes) CF 0.6)

)

(defrule InternalProviderConnectivityFailureYN

 (ProviderHANProblem yes)

 (OVNManagementBadlyConfigured no)

=>

 (assert (InternalProviderConnectivityFailure yes) CF 0.3)

)

(defrule InternalProviderConnectivityFailureNY

 (ProviderHANProblem no)

 (OVNManagementBadlyConfigured yes)

=>

 (assert (InternalProviderConnectivityFailure yes) CF 0.45)

)

(defrule InternalProviderConnectivityFailureNN

 (ProviderHANProblem no)

 (OVNManagementBadlyConfigured no)

=>

 (assert (InternalProviderConnectivityFailure yes) CF 0.01)

)

;---

(defrule OVNManagementBadlyConfiguredY

 (ProviderHANProblem yes)

=>

 (assert (OVNManagementBadlyConfigured yes) CF 0.4)

)

(defrule OVNManagementBadlyConfiguredN

 (ProviderHANProblem no)

=>

 (assert (OVNManagementBadlyConfigured yes) CF 0.3)

)

;---

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

61

(defrule ServiceMalfunctionY

 (ProviderHANProblem yes)

=>

 (assert (ServiceMalfunction yes) CF 0.1)

)

(defrule ServiceMalfunctionN

 (ProviderHANProblem no)

=>

 (assert (ServiceMalfunction yes) CF 0.01)

)

;---

(defrule ServiceProviderDeviceDownOrDisconnectedYY

 (ProviderHANProblem yes)

 (OVNManagementBadlyConfigured yes)

=>

 (assert (ServiceProviderDeviceDownOrDisconnected yes) CF 0.4)

)

(defrule ServiceProviderDeviceDownOrDisconnectedYN

 (ProviderHANProblem yes)

 (OVNManagementBadlyConfigured no)

=>

 (assert (ServiceProviderDeviceDownOrDisconnected yes) CF 0.2)

)

(defrule ServiceProviderDeviceDownOrDisconnectedNY

 (ProviderHANProblem no)

 (OVNManagementBadlyConfigured yes)

=>

 (assert (ServiceProviderDeviceDownOrDisconnected yes) CF 0.3)

)

(defrule ServiceProviderDeviceDownOrDisconnectedNN

 (ProviderHANProblem no)

 (OVNManagementBadlyConfigured no)

=>

 (assert (ServiceProviderDeviceDownOrDisconnected yes) CF 0.01)

)

;---

(defrule ProviderHANCongestionY

 (ProviderHANProblem yes)

=>

 (assert (ProviderHANCongestion yes) CF 0.05)

)

(defrule ProviderHANCongestionN

 (ProviderHANProblem no)

Analysis

62

=>

 (assert (ProviderHANCongestion yes) CF 0.01)

)

;---

; FACT ASSERTION

;---

(deffacts UserEvidences

 (ProviderHANProblem yes) CF 1.0

)

Code III-2 Fuzzy Clips vs Bayesian Networks comparison results

Result of execution

;---

f-0 (initial-fact) CF 1.00

f-1 (ProviderHANProblem yes) CF 1.00

f-2 (OVNManagementBadlyConfigured yes) CF 0.40

f-3 (InternalProviderConnectivityFailure yes) CF 0.24

f-4 (ServiceProviderDeviceDownOrDisconnected yes) CF 0.16

f-5 (ServiceMalfunction yes) CF 0.10

f-6 (ProviderHANCongestion yes) CF 0.05

;---

III-4 Bayesian Network for the comparison between Fuzzy clips and Bayesian networks. Inference results with an
evidence introduced

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

63

Result Analysis: Complexity Degree

As we can infer from the code, the complexity of a node codification is as follow.

Let node A be a node in the Bayesian Network representation, and let be the parent of

node . Then, a parent has the states
. For each possible parent state, we have to

add a rule to our Rule-Based System. Thus, the necessary number of rules for node to define a

similar behavior than in the Bayesian Network is as showed in Equation Eq. III-1.

 Eq. III-1

This means that the number of rules needed to perform a node behavior grows exponentially

with the number of its parent states. Thus, implementation of systems with moderate amounts

of states per node could be viable. When the number of states per node grows a little,

implementation of Rule-Based systems with uncertainty factors turns difficult and, practically,

non-viable. On the other hand, Bayesian Network representation makes our job easier. Graphic

interfaces allow build the system by a more intuitive way and have a clear view of system

performance. Bayesian Networks are more understandable for humans and more easily

developed, implemented and modified.

Result Analysis: Differences between both models

According to the results obtained in Code III-2 and in Figure III-4, some differences between both

systems performance can be observed. When implementing inference between nodes directly

related to the evidence node, no differences are shown. However, when there is a node

between evidence and destination nodes, the results vary depending on what method. This is

not an error. Simply, methods are based on different theories.

Bayesian Networks, as described in section II - 2.4, are based on Bayes theory. That means that

the probabilities are computed according to conditional probability tables of the nodes.

Therefore, results do not show as much the uncertainty of the information obtained but the best

information we can obtain with the provided evidences.

Contrary to BN model, FuzzyClips inference engine use products to calculate the level of

uncertainty. Accordingly, the degree of uncertainty will be increasing increasingly as we move

away from the evidence node.

FuzzyClips describe facts and rules reality level by means of Certainty Factors (CF). Certainty

Factor of a fact which is inferred (it is not an evidence) will be calculated as the product of the CF

of the rule multiplying by the CF of each fact on which this rule depends.

Certainty Factors of FuzzyClips model both the uncertainty and the imprecision of facts and rules

applied. In our case, we have not used uncertain / imprecise rules because we are completely

sure about the relations between nodes. In fact, relations between nodes are completely

precise, so the only information we have to add is their uncertainty degree.

Let us understand this better through several examples showed in the results.

Analysis

64

Firstly, ProviderHANCongestion node shows the same numbers in both models. That is because

there is not any node between this node and evidence node. In the Bayesian Network, the

conditional probability presents linking this node and evidence node is

 . Similarly, in the FuzzyClips

model, the CF of the fact asserted by corresponding rule is also and the CF of the previous

fact (the evidence) is , so the result is the product

 . As we see, when there is not any node between a node and the evidence node,

obtained values are the same.

Nevertheless, InternalProviderConnectivityFailure node does not show the same results in both

models. In the Bayesian Network, Bayes theorem will be applied, resulting a probability.

However, inf FuzzyClips model the CF of the fact asserted by corresponding rule is 0:6 and the CF

of the previous facts are for the evidence node and for the

OVNManagementBadlyConfigured node, resulting

 . Thus, we see that

when the distance from evidence node to a node is more than one, then the CF decrease a lot

due to the lack of certainty.

About different choices shown above, we cannot simply state our preference about one of

them. Each one has its strengths and its weaknesses. Bayesian Networks have many advantages,

such as they are easy to build and intuitive. Bayesian Networks have a very efficient computation

thanks to algorithms, which are improving more and more. In addition, they are easily

distributable, what is the issue of our project. Rule–Based expert systems with uncertainty

factors and, concretely, FuzzyClips, have many advantages such as they are more customizable

and adaptable to our needs. We can make it more intelligent and more helpful. However, they

have a more difficult implementation and modification, as well as they are hardly distributable.

III - 4.1.c. Our choice: Bayesian Reasoning

We have chosen Bayesian Networks as the reasoning technique for this project due to several

reasons. Bayesian Networks have many advantages, such as they are easy to build and intuitive.

In addition, Bayesian Networks have a very efficient computation thanks to algorithms, which

are improving more and more. Moreover, they are easily distributable, what is the issue of our

project. Other reasoning techniques shown in section II - 2 have advantages such as they are

more customizable and adaptable to our human reasoning. However, they have a more difficult

implementation and modification, as well as they are hardly distributable. On the other hand,

Bayesian Networks are easily distributable and very adequate to incomplete knowledge, dealing

easily with uncertainty.

III - 4.2. Distributed Reasoning: MSBN, our choice

Among the distributed reasoning techniques presented in II - 2, there are two which are more

adequate to our problem.

DPNs are relatively simple to be implemented. The connections among different agents can be

established at run time (self-configuration). It does not need prior compilation and

communications are established only when necessary, thus it has high efficiency for one query

variable at one time of a network with simple structure. However, DPNs has three strict

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

65

requirements for its structures as listed before, therefore, it is only suitable for some special

applications.

In order to represent cooperative multi-agents who must reason with uncertain knowledge, a

coherent framework is necessary. We choose multiply sectioned Bayesian networks (MSBNs) as

the basis for this project because they are based on well-established theory on Bayesian

networks and because they are modular.

A MSBN consists of a set of interrelated Bayesian subnetworks each of which encodes certain

knowledge on a subdomain. Bayesian subnetworks are organized into a Hypertree structure

such that inference can be performed in a distributed fashion while answers to queries are exact

with respect to probability theory.

Each subnetwork only exchanges information with adjacent subnetworks on the Hypertree, and

each pair of adjacent subnetworks only exchanges information on a set of shared variables. That

is the great advantage of this organization: the complexity of communication among all agents is

linear on the number of agents and the complexity of local inference is the same as if the subnet

is a single agent based BN.

MSBN organization offer a simple communication model that let the system be scalable as well

as reliable [20].

III - 4.3. BN Inference Frameworks: UnBBayes, our choice

Each one of the Inference Engines showed in section II - 4.5 has its own different characteristics.

Hence, there is no a preferred Inference Engine. Each one has its own strengths and weaknesses.

We prefer the graphical interface of Genie, the versatility of SamIam and the readability of

UnBBayes. Netica is not even an option for our project due to its commercial and we do not like

to pay for it. In addition, file formats are not compatible among different inference engines as it

is been shown in section II - 4.5.g. Hence, although conversion between different file formats is

not too difficult, we have to make a choice.

To clarify this point, the most relevant characteristics of each Inference Engine are shown in

table Table III-31.

Inference
Engine

Variety of
Inference

Algorithms

Programming
language

Maintenance Data Formats License

SamIam High Java
(not totally)

High .net (full supported),
.dsl, .xdsl, .dsc, .dne,

.erg

Free

UnBBayes Low Java High .net, .xml (XMLBIF) Open
Source

Genie &
Smile

High C++
(Wrapper Java)

High .xdsl, .dsl, .erg, .dne,
.dsc, .net, .dxp

Free

Netica High C++ High .dne, .neta, .net, .dxp,
.dsc, .ergo

Commerc
ial

Table III-31 Inference engines comparison

Analysis

66

First, as we mentioned below, Netica is not an option for us due to it has commercial license

only.

On one hand, Genie and SamIam have clearly the most attractive and usable graphic interfaces.

They are easy to use as well as intuitive and simple.

On the other hand, despite UnBBayes has not a very usable graphic interface, it has a feature

that make it the choice: It is Open Source.

As we need to develop new source and reuse some code already present in the inference

engine, our work becomes very simpler if we can have the original code. UnBBayes only

implements Hugin algorithm and this has not been optimized too much. It only can use .net

format and a proprietary format known as XMLBIF that is not used for any other inference

engine. However, the availability of its source code and the fact that it is programmed

completely in java language, make it the optimal choice for this project.

According to the analysis done, UnBBayes is chosen as the Inference Engine for our project.

III - 4.4. Distributed Communication Frameworks: JGroups,

our choice

Among the set of tools studied in section II - 6 we value JGroups as the best choice. While

Hazelcast is a framework for sharing memory, JGroups is a framework for message passing.

Hazelcast has been developed to share data among servers or cache data to achieve faster

response times while trying to avoid single point of failures. It has a good response to dynamic

events, as node crashes but those events are transparent for user. Thus, the treatment and

reaction to fails and crashes is more difficult and communication between nodes in the MSBN is

not the preferred for this distributed reasoning technique.

Consequently, JGroups is chosen as the communication framework of this project since it offer

great advantages such as easy managing of all active members, reliable communication between

them, detection and notification about joined / left / crashed members or point-to-multipoint

and point-to-point communications.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

67

IV - Architecture and Design

In this chapter, a detailed description of the whole developed system is shown. Concretely, it is

separated in two different sections, one for each developed architecture.

The first presented architecture is the synchronous one, which is an adaptation of the

architecture presented in section II - 5.4 to make it available to the use in multi-agent systems.

The second presented architecture is the iterative one. This is the most important part of this

project. It allows the use of this in multi-agent systems, as well as allows the reliability and

robustness to crashes or errors.

Architecture and Design

68

IV - 1. System parts

This distributed reasoning framework consists of Hypernodes, which are the only units that

compose it.

Each Hypernode is completely independent of other Hypernodes. This is the great advantage of

this architecture: each Hypernode can be created or stopped without affect the correct

functioning of the whole MSBN.

A Hypernode has a number of private nodes and other that are public. Public nodes are those

that are shared with other Hypernodes, and are used as communication channel between

several Hypernodes.

Hypernodes are connected through Linkages. In turn, Linkages are formed of Links, which are

the basic unit, linking pairs of cliques. For more details about this architecture, a more detailed

description is given in section II - 4.3.

IV - 2. Developed MSBN Architectures

The MSBN architecture studied in II - 5.3 is implemented to allow reasoning with uncertainty in a

synchronous Single-Agent System. This departing architecture is known as Single-Agent MSBN

with synchronous communications. This means that the system will run over an only agent that

will contain the entire MSBN. In addition, we have to highlight that this architecture use

synchronous communications. That is to say, processes are performed at the same time in the

different subnetworks of the MSBN, what can result in useless waiting times.

The single-agent paradigm is inadequate when uncertain reasoning is performed by elements of

a system between which there is some “distance”, which may be spatial, temporal or semantic.

Such systems pose special issues that need to be addressed. A multi-agent view is thus required

where each subnetwork part is an autonomous intelligent subsystem.

Although each subnetwork does not necessarily have to belong to an agent, and could be used

by any program, in this project we will focus on agent paradigm to do the explanation easier.

Assuming a multi-agent paradigm, each agent holds its own partial domain knowledge, accesses

some external information source and consumes some computational resource. Each agent

communicates with other agents to achieve the system’s goal cooperatively. MSBNs provide a

simple way of communication between agents to share only those beliefs that are public and

only with those agents that require them. In addition, MSBN is a precise way that allows dealing

with the lack of information.

In our work, we start from the study of the already developed synchronous Single-Agent

architecture to develop other architectures more appropriate to our problem. We have

developed and implemented two different architectures to allow the use of MSBNs in Multi-

Agent Systems (MASs): synchronous architecture and iterative architecture.

As synchronous SAS architecture does, synchronous MAS architecture uses a synchronous and

centralized architecture. Although the selection of the root/coordinator node can be done

arbitrarily, all processes in the compilation of the BN and in the communication of beliefs in the

BN are done synchronously. This is achieved by mean of recursive calling to the corresponding

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

69

methods in the different subnetworks. Since all methods are called recursively, while processes

are performed in each subnetwork, all other subnetworks are in active waiting.

To extend single-agent MSBNs into MAS, many issues need to be resolved. First steps involve the

coherent agent communication[21], the optimization of communication scheduling[22] and the

distributed structure verification[23].

IV - 2.1. Synchronous Architecture for Multi-Agent MSBN

IV - 2.1.a. Introduction

Notation used in this section

As a link before this report and the programmed code, this section use some notation that

correspond to programmatic language. The conventions used are:

 Names of objects are shown corresponding to programmed ones. That is, to refer to a

link that belongs to a Linkage that is in the list of this subnetwork named links, we will

use the notation subnetwork.links.linkage.linkList.link. The explanation of this notation

is, since the subnetwork has a list of Linkages called links, a linkage is trivially called

linkage, each Linkage has a list of Links called linkList, and each Link in this list is trivially

called link.

 Objects used to extract some information at a determinate step or process are enclosed

between curly brackets {}. For example, if in a determinate step we use the Links of a

Linkage to know the shared nodes, after the description of this step {linkage.linkList.link}

will be written.

 Objects modified during a determinate step or process are enclosed between square

brackets []. For example, if in a determinate step we modify a property of a Link of a

Linkage, after the description of this step [linkage.linkList.link.property] will be written.

 The interface methods used for communication between subnetworks are written in a

gray color.

Communication Framework

The architecture needs a communication framework that supports synchronous operations. That

is, a framework that supports Remote Procedure Call (RPC). It has been manually implemented

by the following means:

 Direct method calling to emulate communication in an only computer.

 Socket based communication that allows the calling of methods remotely according to

the message passed. In addition, some objects can be serialized to be sent.

 Jadex Agent Platform, which implements itself serializing methods for messages.

Architecture and Design

70

Class Diagram

To describe the developed architecture, the class diagram shown in Figure IV-1 is proposed.

There the relationships between the more important classes belonging to the developed

architecture can be seen. Those classes that belong to the core of UnBBayes, such as Node,

Network or Edge, are not shown in this diagram due to they have not been written by us.

Figure IV-1 Class diagram for Synchronous architecture

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

71

State Diagram

In synchronous architecture, compilation is not able to go back at any time. Thus, the whole

process need to be repeated each time there are any structure change in the MSBN. These

characteristics can be observed in the state diagram shown in Figure IV-2.

Figure IV-2 State diagram for Synchronous architecture

Architecture and Design

72

IV - 2.1.b. Detailed Description

In this section, we give a high detailed description of the basic operations performed along the

states given above. For that purpose, we use the notation conventions given in section IV - 2.1.a.

IV - 2.1.b.1. Compilation

From ANY_STATE to INITIAL_STATE

 This compilation state is only used for indicate that no state has been set yet.

From INITIAL_STATE to INITIAL_RESET_STATE

 Clear Linkages, Adjacents and parent. [linkages, adjacents, parent]

 Verify Consistency

From INITIAL_RESET_STATE to HYPERTREE_DONE_STATE

 Find intersection this and the other subnetworks.

getSubNetworkWithNode

getSubNetworkPublicPart(requiredState=INITIAL_RESET)

 Choose one subnetwork as an adjacent.

 Ask him to put this subnetwork as parent.

setAsParent [parent of the subnetwork]

 Put subnetwork chosen as adjacent of this subnetwork. [adjacent]

 Add a linkage between this and its adjacent subnetwork. This subnetwork is the owner

of this linkage. [linkages]

From HYPERTREE_DONE_STATE to MORALIZATION_INITIALIZED_STATE

 Verify Cycles (in the whole MSBN).

sendVerifyCycles

sendResetVerificationOfCycles

 Local Moralization. Add fill-ins needed to arcosMarkov. [arcosMarkov]

From MORALIZATION_INITIALIZED_STATE to MORALIZATION_DONE_STATE

 For each adjacent:

o Ask to perform local moralization. [ArcosMarkov]

getSubNetworkPublicPartWithId(requiredState=MORALIZATION_INITIALIZED)

 For each adjacent:

o Distribute arcosMarkov of this subnetwork.

sendAddMarkovArcs

o Ask to perform complete moralization and return arcosMarkov. [ArcosMarkov]

getSubNetworkPublicPartWithId(requiredState=MORALIZATION_DONE)

 For the parent (if exists):

o Distribute arcosMarkov of this subnetwork. [arcosMarkov of the parent]

sendAddMarkovArcs

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

73

From MORALIZATION_DONE_STATE to TRIANGULATION_INITIALIZED_STATE

 Make a copy of nodeList of this subnetwork in its copiaNos. [copiaNos]

 Clear the elimination order list (oe) of this subnetwork. [oe]

From TRIANGULATION_INITIALIZED_STATE to TRIANGULATION_DONE_STATE

 Eliminate Depth (caller=null):

o For each adjacent: [adjacent]

 Update this adjacent

getSubNetworkPublicPartWithId(requiredState=TRIANGULATION_INITIA

LIZED)

 If(minimumWeightTriangulation(adj))

 Distribute the arcs added during triangulation of this

subnetwork.

distributeMyArcsTo(destination=adjacent)

 For each adjacent different than caller:

 Ask to Eliminate Depth:

sendEliminateDepth(caller=thisSubnetwork)

 If(adjacent has parent)

 If(minimumWeightTriangulation(parent))

o Distribute the arcs added during triangulation of this

subnetwork.

distributeMyArcsTo(destination=parent)

 For each adjacent:

o Update this adjacent

GetSubNetworkPublicPartWithId(requiredState=TRIANGULATION_INITIALIZED)

o Distribute the arcs added during triangulation of this subnetwork.

distributeMyArcsTo(destination=adjacent)

o Ask to perform Triangulation and return arcs [arcs]

getSubNetworkPublicPart(requiredState=TRIANGULATION_DONE)

 If(this subnetwork has parent)

o Ask to init triangulation.

getSubNetworkPublicPart(requiredState=TRIANGULATION_INITIALIZED)

o Distribute the arcs (added during triangulation of this subnetwork.

distributeMyArcsTo(destination=parent)

From TRIANGULATION_DONE_STATE to JUNCTION_TREE_COMPILED_STATE

 Reset the evidences in each node of the subnetwork. [node.evidence]

 Put a new Junction Tree as jt of this subnetwork. It has separator and clique lists empty.

[jt]

 Add all possible cliques of this subnetwork to jt.cliques. [jt.cliques]

 Associate an index to each clique in jt.cliques and sort jt.cliques according to this index.

[jt.clique.index, jt.cliques (order)]

 Sort nodes in cliques and separators according to the elimination order. [jt.clique.nos

(order)]

Architecture and Design

74

 For each node in this subnetwork:

o Add to each jt.clique tables (potentialTable and utilityTable) as many variables as

nodes in this clique. {jt.clique.node} [jt.clique.potentialTable,

jt.clique.utilityTable]

o Add to each jt.separator tables (potentialTable and utilityTable) as many

variables as nodes in the clique. {jt.separator.node} [jt.separator.potentialTable,

jt.separator.utilityTable]

o For each node in the subnetwork, add this node to the appropriate list of the

jt.clique which has the minimum size potentialTable. This appropriate list is

nosAssociados in the case of this node is a ProbabilisticNode or

associatedUtilNodes otherwise. {nodeList.node}[jt.clique.nosAssociados,

jt.clique.associateUtilNodes]

 Init the beliefs of the jt:

o If the beliefs of the jt haven’t been initialized yet:

 For each clique in jt:

 Set potentialTable values to 1. [jt.clique.potentialTable]

 Multiply the potentialTable by each nosAssociados.node

potentialTable.

{jt.clique.nosAssociados.node.potentialTable}[jt.clique.potential

Table]

 Set utilityTable values to 0. [jt.clique.utilityTable]

 Add to the utilityTable each associatedUtilNodes.node

utilityTable.

{jt.clique.associatedUnitNodes.node.utilityTable}[jt.clique.utility

Table]

 For each separator in jt:

 Set potentialTable values to 1. [jt.separator.potentialTable]

 Set utilityTable values to 0. [jt.separator.utilityTable]

 Make consistent by collecting and distributing evidences.

 Make a internal copy of the potentialTable and utilityTable of all cliques

and separators in jt.{jt.clique.potentialTable.dataPT,

jt.clique.utilityTable.dataPT, jt.separator.potentialTable.dataPT,

jt.separator.utilityTable.dataPT} [jt.clique.potentialTable.dataCopy,

jt.clique.utilityTable.dataCopy, jt.separator.potentialTable.dataCopy,

jt.separator.utilityTable.dataCopy]

o If the beliefs of the jt have already been initialized:

 Restore data from the internal copy done.

{jt.clique.potentialTable.dataCopy, jt.clique.utilityTable.dataCopy,

jt.separator.potentialTable.dataCopy, jt.separator.utilityTable.dataCopy}

[jt.clique.potentialTable.dataPT, jt.clique.utilityTable.dataPT,

jt.separator.potentialTable.dataPT, jt.separator.utilityTable.dataPT]

o Make consistency by mean of collect and distribute evidences. {jt.clique.child}

[jt.clique.potentialTable, jt.separator.potentialTable]

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

75

o Make a copy of the data in the tables: copy both potentialTable and utilityTable

from dataPT to dataCopy in all cliques and separators.

o For each node in copiaNos:

{jt.sep.potentialTable, jt.clique.potentialTable}[node.associatedClique]

 If it's a ProbabilisticNode: look for the separator that contains this node

which has the smallest potentialTable and set this separator as

associatedClique of the node.

 If it's a DecisionNode or it doesn't exist a separator which contains this

node: look for the clique that contains this node which has the smallest

potentialTable and set this clique as associatedClique of the node.

o For each node in copiaNos:

 Init marginalList as a new array of Floats. [node.marginalList]

 Set marginalList values to values obtained from

nodo.cliqueAssociado.potentialTable.

{node.cliqueAssociado.potentialTable} [node.marginalList]

From JUNCTION_TREE_COMPILED_STATE to LINKAGE_TREE_MADE_STATE

For each linkage:

 Clear the linkList. [linkage.linkList]

 Assign a new jt (junction tree) to this linkage. [linkage.jt]

 Call makeCliqueList(n1.jt.clique0) method, where makeCliqueList(Clique c) does the

following:

{n1.jt.cliques}

o Create a new clique (b) with the nodes intersection between this linkage and c.

o Add b to jt.cliques. [linkage.jt.clique]

o Add to jt.linkList a new link with b as host0. [linkage.jt.linkList]

o For each clique child of c:

[linkage.jt.clique, linkage.jt.linkList, linkage.jt.clique.parent,

linkage.jt.clique.child]

 Call makeCliqueList(child) obtaining b2, the new intersection clique

created from the child.

 Set b as parent of the child.

 Add b2 as child of b.

o Return b.

 Call remove1stPass method where, for each link in linkage.jt.linkList, the following is

done:

[linkage.jt.linkList]

o If the clique hasn’t children:

 Remove nodes from linkage.jt.linkList.link.clique that are already in the

parent of this clique.

 If the clique hasn’t nodes, remove this link.

Architecture and Design

76

 Call remove2ndPass method where, for each link in linkage.jt.linkList, the following is

done:

[linkage.jt.linkList]

o If all nodes in link.clique are already in the parent: remove link.

o If any of the children of the parent of this clique (a brother) has all of its nodes:

remove link.

 Call assignV1 method where, for each link in linkage.jt.linkList, the following is done:

[linkList.link.Host1]

o Look for the linkage.n2.jt.cliques.clique what contains all the nodes of the

link.clique and set this as link.Host1.

 Call initTables method, where the following is done:

[jt.separators, linkList.link.clique.potentialTable, jt.separators.separator.potentialTable]

o InitSeparators: for each linkage.jt.clique:

 For each clique.child:

 Construct a new separator with the nodes of the intersection of

its nodes.

o For each linkList.link.clique.potentialTable:

 Add as many variables as nodes in the clique.

 Set all of these variables to 1.

o For each jt.separators.separator.potentialTable:

 Add as many variables as nodes in the separator.

 Set all of these variables to 1.

From LINKAGE_TREE_MADE_STATE to BELIEFS_INITIALIZED_STATE

Starting in the subnetwork net0:

 Call collectBeliefs(net0) method where, the following is done:

o For each adjacent (netAdj):

 If netAdj has adjacents, call collectBeliefs(netAdj)

sendCollectBeliefs(destinationSubNetworkId, requiredCompilationState)

 Call updateBeliefs (net, netAdj)

sendUpdateBeliefs(destinationSubNetworkId, fromId, fromAdjacent)

 Call distributeBeliefs(net0) method where, the following is done:

o For each adjacent (netAdj):

 Call updateBeliefs(netAdj, net)

sendUpdateBeliefs(destinationSubNetworkId, fromId, fromAdjacent)

 Call distributeBeliefs(netAdj)

sendDistributeBeliefs(destinationSubNetworkId,

requiredCompilationState)

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

77

updateBeliefs(netToUpdate, fromNet):

 For each links.linkage:
o Linkage.absorb(fromAdjacent = true)

 For each linkage.linkList.link:

 Link.absorbIn(fromAdjacent)
[link.originalLinkTable, link.newLinkTable,
link.clique.potentialTable]

 RemoveRedundancy:

 For each linkage.jt.separator:
o Remove from separator.probabilityFunction all

variables which are in linkage.clique2 and are not in
separator.

o Copy to the separator.probabilityFunction values in
linkage.clique2.

 For each linkList.link which clique is linkage.clique2:
link.removeRedundancy()

 For each linkage.linkList.link:

 Link.absorbOut(fromAdjacent)
[link.originalLinkTable, link.newLinkTable,
link.v0/v1.potentialTable]

 For the subnetwork to what beliefs propagate:

 Absorb2()

Link.absorbIn(fromAdjacent):

 Copy clique.potentialTable to originalLinkTable
{link.clique.potentialTable}[link.originalLinkTable]

 Copy the part of clique (fromAdjacent / fromParent) link.v1/v0.potentialTable whose
nodes are in link.clique, to link.newLinkTable.
{link.v1/v0.potentialTable}[link.newLinkTable]

 Copy values in newLinkTable to link.clique.PotentialTable.
{link.newLinkTable}[link.clique.potentialTable]

In short, take the corresponding part of clique link.v1/v2 and set it as
link.clique.potentialTable.

Link.absorbOut(fromAdjacent):

 Divide link.newLinkTable by originalLinkTable.
{link.originalLinkTable}[link.newLinkTable]

 Multiply link.v0/v1.potentialTable by link.newLinkTable.potentialTable obtained.
{link.newLinkTable}[link.v0/v1.potentialTable]

SubNetwork.Absorb2():

This.jt.consistency()

This.updateMarginals() [nodeList.node.marginalList]

From BELIEFS_INITIALIZED_STATE to COMPILATION_DONE_STATE

Do nothing. This compilation will represent the complete update of beliefs in the iterative

version presented in the following section.

Architecture and Design

78

IV - 2.1.b.2. Adding and propagating Beliefs

Add Finding

 Set the evidence of this node to the number passed. [node.evidence]

 Set the marginal of this node according to the evidence set. {node.evidence}

[node.marginalList]

Update Evidences (at SubNetwork class)

 For each node with evidences, call to Update Evidences (at TreeVariable class):

o Multiply the node.associatedClique.potentialTable.dataPT by marginals in

node.marginalList. {node.marginalList}

[node.associatedClique.potentialTable.dataPT]

 Make the consistency of this subnetwork.junctionTree:

o Update junctionTree.n with the normalize probability.

o Collect evidences to the root node by updating the separator.potentialTable and

the clique.potentialTable {clique2.potentialTable} [separator.potentialTable,

clique1.potentialTable]

o Distribute evidences from the root node by updating the

separator.potentialTable and the clique.potentialTable {clique1.potentialTable}

[separator.potentialTable, clique2.potentialTable]

 For each node which is a TreeVariable, call to UpdateMarginals (at ProbabilisticNode

class):

o Update node.marginalList with values obtained from

node.associatedClique.potentialTable. {node.associatedClique.potentialTable}

[node.marginalList].

 For each node if node.hasLikelihood property is true, remove evidences from this node

and set hasLikelihood to false. {node.hasLikelihood} [node.evidence,

node.hasLikelihood].

Shift Attention from a subnetwork to another

 Make path: obtain a list with the subnetworks, which need to be updated to update a

concrete subnetwork.

 For each pair of linked subnetwork composing the path, following the path, call to

UpdateBelief. This is described above, in Compilation Process.

IV - 2.2. Iterative Architecture for Multi-Agent MSBN

IV - 2.2.a. Introduction

This architecture proposes that each subnetwork (or its associated agent) can work

independently. Even though multiple agents may acquire evidence asynchronously in parallel

(compare with the single user case where evidence is always entered into the current subnet),

the corresponding communication operations of MSBNs ensure that the answers to queries

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

79

from each agent are consistent with evidence acquired in the entire system after each

communication. Since communication is infrequent, the operations also ensure that between

two successive communications, the answers to queries for each agent are consistent with all

local evidence gathered so far and are consistent with all evidence gathered in the entire system

up to the last communication. Therefore, this architecture can be characterized as one of

functionally accurate, cooperative distributed systems.

Notation used in this section

As a link before this report and the programmed code, this section uses some notation that

corresponds to programmatic language. The conventions used are:

 Names of objects are shown corresponding to programmed ones. That is, to refer to a

link that belongs to a Linkage that is in the list of this subnetwork named links, we will

use the notation subnetwork.links.linkage.linkList.link. The explanation of this notation

is, since the subnetwork has a list of Linkages called links, a linkage is trivially called

linkage, each Linkage has a list of Links called linkList, and each Link in this list is trivially

called link.

 Objects used to extract some information at a determinate step or process are enclosed

between curly brackets {}. For example, if in a determinate step we use the Links of a

Linkage to know the shared nodes, after the description of this step {linkage.linkList.link}

will be written.

 Objects modified during a determinate step or process are enclosed between square

brackets []. For example, if in a determinate step we modify a property of a Link of a

Linkage, after the description of this step [linkage.linkList.link.property] will be written.

 The interface methods used for communication between subnetworks are written in a

gray color.

Communication Framework

This architecture uses a communication framework that supports asynchronous message

sending. This means that, when a message arrives, a simple operation (normally queue the

information conveniently) needs to be done. It has been achieved using an already developed

communication framework: JGroups, which is a reliable group communication toolkit written

entirely in Java. It is based on IP multicast.

Although developed architecture is independent from communication framework, there are

several services provided by JGroups toolkit that are not easily found in other communication

frameworks, such as:

 Notification about joined / left /crashed members

 Point-to-multipoint and Point-to-point messaging

 State transmission

Architecture and Design

80

Class Diagram

To describe the developed architecture, the class diagram shown in Figure IV-3 is proposed.

There the relationships between the more important classes belonging to the developed

architecture can be seen. Those classes that belong to the core of UnBBayes, such as Node,

Network or Edge, are not shown in this diagram due to they have not been written by us.

Figure IV-3 Class diagram for Iterative Architecture

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

81

State Diagram

In Iterative architecture, the state of the compilation can go back to a previous state. This can

contrast with the previous state logic shown in section IV - 2.1.a for synchronous architecture.

State diagram shown in Figure IV-4 includes those states that belong to compilation process, as

well as those that precede and follow it.

Figure IV-4 State diagram for Iterative architecture

Architecture and Design

82

IV - 2.2.b. Detailed Description

In this section, we give a high detailed description of the basic operations performed along the

states given above. For that purpose, we use the notation conventions given in section IV - 2.1.a.

IV - 2.2.b.1. Initialization

Create a new SubNetworkPart

 Associate subnetwork file to load.

 Associate an even listener.

Start

 Create a new Thread (loaderThread) which will call startInTheSameThread.

StartInTheSameThread

 Load the SubNetworkCompiler (snc) associated to the corresponding file. This snc will

have already loaded the subnetwork.

 Set the initial currentCompilationState to ANY_STATE and the targetCompilationState to

COMPILATION_DONE_STATE.

 Clear pendingCompilationStates list.

 Create a new JGroupsCommSender and a new JGroupsCommReceiver.

 Start a new Thread (compilationThread), which will try to compile repeatedly while

keepAlive is true.

IV - 2.2.b.2. Compilation

From ANY_STATE to INITIAL_STATE

 This compilation state is only used for indicate that no state has been set yet.

From INITIAL_STATE to INITIAL_RESET_STATE

 Clear Linkages, Adjacents and parent. [linkages, adjacents, parent]

 Verify Consistency

 Local Moralization. Add fill-ins needed to arcosMarkov. Make a copy of edgeList in

copiaArcos, but removing all edge with destination in a decision node. {edgeList}

[copiaArcos, arcosMarkov]

 Only the first time:

o Save the public info about this subnetwork (snInfo) in the snInfo sorted map.

[snInfo]

o Send the public info about this subnetwork to all Hypernodes in MSBN.

publishNodes

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

83

From INITIAL_RESET_STATE to HYPERTREE_DONE_STATE

 CheckLinks:

o Find the intersection between each pair of subnetworks with the information

contained in snInfo.

o Choose as root the node that is the first in the sorted list snInfo, sorting the

items according to alphabetical order.

o Recursively, assign linkages between the subnetwork that is not in hypertree yet

and has the largest amount of nodes in common with another subnet that is

already in hypertree.

o If there are any networks that cannot be connected with hypertree, another

root node will be chose to continue this process. In this case, our MSBN is

divided in several MSBN due to some subnetwork is down.

o If there are any changes in parent or adjacent subnetworks, these changes are

applied and continue compilation will be necessary. If, on the contrary, there are

no changes in this part of hypertree, we will jump to

LINKAGE_TREE_MADE_STATE compilation state.

 Verify Cycles (in the whole MSBN):

Root Hypernode will send a message to call all subnetworks to start marking its

nodes. This message has an associated cycleTestingId. Only last received id will

be used to check cycles.

sendVerifyCycles

When each subnetwork receives this message, will start to mark all leaf and root

nodes that it has. In the case of public nodes, only will be marked those root

nodes whose parents are contained in this subnetwork and all of them are

already marked. A public leaf node will be marked when all children of this node

have been marked in each subnetwork. For this purpose, a subnetwork will send

a message to those that share the same node when it has marked all the

children of that node.

sendNotifyMarkedChildNodes

When every public node is marked, a message will be sent to all subnetworks

that share this node.

SendDistributeMark

Finally, when a subnetwork has all its nodes marked, will send a message to the

root to indicate that. Root will store these messages to know when the MSBN

has completed the cycle check. Then, root will send the same message to all

subnetworks. The meaning of this message depends on who is the sender.

sendNotifyCycleVerificationDone

From HYPERTREE_DONE_STATE to MORALIZATION_INITIALIZED_STATE

 Restore the original markov arcs obtained in local moralization.

Architecture and Design

84

From MORALIZATION_INITIALIZED_STATE to MORALIZATION_DONE_STATE

 For each adjacent:

Ask to perform local moralization. [ArcosMarkov]

getSubNetworkPublicPartWithId(requiredState=MORALIZATION_INITIALIZED)

 For each adjacent:

Distribute arcosMarkov of this subnetwork.

sendAddMarkovArcsFromMoralization

 For the parent (if exists):

Distribute arcosMarkov of this subnetwork. [arcosMarkov of the parent]

sendAddMarkovArcsFromMoralization

From MORALIZATION_DONE_STATE to TRIANGULATION_INITIALIZED_STATE

 Make a copy of nodeList of this subnetwork in its copiaNos. [copiaNos]

 Clear the elimination order list (oe) of this subnetwork. [oe]

From TRIANGULATION_INITIALIZED_STATE to TRIANGULATION_DONE_STATE

 Eliminate Depth (caller=null):

o For each adjacent: [adjacent]

 Update this adjacent

getSubNetworkPublicPartWithId(requiredState=TRIANGULATION_INITIA

LIZED)

 If(minimumWeightTriangulation(adj))

Distribute the arcs added during triangulation of this

subnetwork.

distributeMyArcsTo(destination=adjacent)

 For each adjacent different than caller:

Ask to Eliminate Depth:

sendEliminateDepth(caller=thisSubnetwork)

 If(adjacent has parent)

 If(minimumWeightTriangulation(parent))

o Distribute the arcs added during triangulation of this

subnetwork.

distributeMyArcsTo(destination=parent)

 For each adjacent:

Update this adjacent

GetSubNetworkPublicPartWithId(requiredState=TRIANGULATION_INITIALIZED)

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

85

Distribute the arcs added during triangulation of this subnetwork.

distributeMyArcsTo(destination=adjacent)

Ask to perform Triangulation and return arcs [arcs]

getSubNetworkPublicPart(requiredState=TRIANGULATION_DONE)

 If(this subnetwork has parent)

Ask to init triangulation.

getSubNetworkPublicPart(requiredState=TRIANGULATION_INITIALIZED)

Distribute the arcs added during triangulation of this subnetwork.

distributeMyArcsTo(destination=parent)

From TRIANGULATION_DONE_STATE to JUNCTION_TREE_COMPILED_STATE

 Reset the evidences in each node of the subnetwork. [node.evidence]

 Put a new Junction Tree as jt of this subnetwork. It has separator and clique lists empty.

[jt]

 Add all possible cliques of this subnetwork to jt.cliques. [jt.cliques]

 Associate an index to each clique in jt.cliques and sort jt.cliques according to this index.

[jt.clique.index, jt.cliques (order)]

 Sort nodes in cliques and separators according to the elimination order. [jt.clique.nos

(order)]

 For each node in this subnetwork:

o Add to each jt.clique tables (potentialTable and utilityTable) as many variables as

nodes in this clique. {jt.clique.node} [jt.clique.potentialTable,

jt.clique.utilityTable]

o Add to each jt.separator tables (potentialTable and utilityTable) as many

variables as nodes in the clique. {jt.separator.node} [jt.separator.potentialTable,

jt.separator.utilityTable]

o For each node in the subnetwork, add this node to the appropriate list of the

jt.clique which has the minimum size potentialTable. This appropriate list is

nosAssociados in the case of this node is a ProbabilisticNode or

associatedUtilNodes otherwise. {nodeList.node}[jt.clique.nosAssociados,

jt.clique.associateUtilNodes]

 Init the beliefs of the jt:

o If the beliefs of the jt haven’t been initialized yet:

 For each clique in jt:

 Set potentialTable values to 1. [jt.clique.potentialTable]

 Multiply the potentialTable by each nosAssociados.node

potentialTable.

Architecture and Design

86

{jt.clique.nosAssociados.node.potentialTable}[jt.clique.potential

Table]

 Set utilityTable values to 0. [jt.clique.utilityTable]

 Add to the utilityTable each associatedUtilNodes.node

utilityTable.

{jt.clique.associatedUnitNodes.node.utilityTable}[jt.clique.utility

Table]

 For each separator in jt:

 Set potentialTable values to 1. [jt.separator.potentialTable]

 Set utilityTable values to 0. [jt.separator.utilityTable]

 Make consistent by collecting and distributing evidences.

 Make a internal copy of the potentialTable and utilityTable of all cliques

and separators in jt.{jt.clique.potentialTable.dataPT,

jt.clique.utilityTable.dataPT, jt.separator.potentialTable.dataPT,

jt.separator.utilityTable.dataPT} [jt.clique.potentialTable.dataCopy,

jt.clique.utilityTable.dataCopy, jt.separator.potentialTable.dataCopy,

jt.separator.utilityTable.dataCopy]

o If the beliefs of the jt have already been initialized:

 Restore data from the internal copy done.

{jt.clique.potentialTable.dataCopy, jt.clique.utilityTable.dataCopy,

jt.separator.potentialTable.dataCopy, jt.separator.utilityTable.dataCopy}

[jt.clique.potentialTable.dataPT, jt.clique.utilityTable.dataPT,

jt.separator.potentialTable.dataPT, jt.separator.utilityTable.dataPT]

o Make consistency by mean of collect and distribute evidences. {jt.clique.child}

[jt.clique.potentialTable, jt.separator.potentialTable]

o Make a copy of the data in the tables: copy both potentialTable and utilityTable

from dataPT to dataCopy in all cliques and separators.

o For each node in copiaNos:

{jt.sep.potentialTable, jt.clique.potentialTable}[node.associatedClique]

 If it's a ProbabilisticNode: look for the separator that contains this node

which has the smallest potentialTable and set this separator as

associatedClique of the node.

 If it's a DecisionNode or it doesn't exist a separator which contains this

node: look for the clique that contains this node which has the smallest

potentialTable and set this clique as associatedClique of the node.

o For each node in copiaNos:

 Init marginalList as a new array of Floats. [node.marginalList]

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

87

 Set marginalList values to values obtained from

nodo.cliqueAssociado.potentialTable.

{node.cliqueAssociado.potentialTable} [node.marginalList]

From JUNCTION_TREE_COMPILED_STATE to LINKAGE_TREE_MADE_STATE

For each linkage:

 Clear the linkList. [linkage.linkList]

 Assign a new jt (junction tree) to this linkage. [linkage.jt]

 Call makeCliqueList(n1.jt.clique0) method, where makeCliqueList(Clique c) does the

following:

{n1.jt.cliques}

o Create a new clique (b) with the nodes intersection between this linkage and c.

o Add b to jt.cliques. [linkage.jt.clique]

o Add to jt.linkList a new link with b as host0. [linkage.jt.linkList]

o For each clique child of c:

[linkage.jt.clique, linkage.jt.linkList, linkage.jt.clique.parent,

linkage.jt.clique.child]

 Call makeCliqueList(child) obtaining b2, the new intersection clique

created from the child.

 Set b as parent of the child.

 Add b2 as child of b.

o Return b.

 Call remove1stPass method where, for each link in linkage.jt.linkList, the following is

done:

[linkage.jt.linkList]

o If the clique hasn’t children:

 Remove nodes from linkage.jt.linkList.link.clique that are already in the

parent of this clique.

 If the clique hasn’t nodes, remove this link.

 Call remove2ndPass method where, for each link in linkage.jt.linkList, the following is

done:

[linkage.jt.linkList]

o If all nodes in link.clique are already in the parent: remove link.

o If any of the children of the parent of this clique (a brother) has all of its nodes:

remove link.

 Call initTables method, where the following is done:

Architecture and Design

88

[jt.separators, linkList.link.clique.potentialTable, jt.separators.separator.potentialTable]

o InitSeparators: for each linkage.jt.clique:

 For each clique.child:

 Construct a new separator with the nodes of the intersection of

its nodes.

o For each linkList.link.clique.potentialTable:

 Add as many variables as nodes in the clique.

 Set all of these variables to 1.

o For each jt.separators.separator.potentialTable:

 Add as many variables as nodes in the separator.

 Set all of these variables to 1.

From LINKAGE_TREE_MADE_STATE to BELIEFS_INITIALIZED_STATE

Each subnetwork:

 Collect beliefs by doing the following:

o Wait for receiving a belief update from each adjacent subnetwork and then,

send a belief update to this subnetwork’s parent if it exists. To send a belief

update to this subnetwork’s parent, send the information of the potentialTable

of the sharing clique (equivalent to host1 of a link) removing the information

corresponding to private nodes.

sendTransferBeliefsToParent

 Distribute beliefs by doing the following:

o Wait for receiving a belief update from this subnetwork’s parent (if it exists) and

then, send a belief update to each adjacent subnetwork.

sendTransferBeliefsToAdjacent

updateBeliefs(netToUpdate, fromNet):

 For each links.linkage:
o Linkage.absorb(fromAdjacent = true)

 For each linkage.linkList.link:

 Link.absorbIn(fromAdjacent)
[link.originalLinkTable, link.newLinkTable,
link.clique.potentialTable]

 RemoveRedundancy:

 For each linkage.jt.separator:
o Remove from separator.probabilityFunction all

variables which are in linkage.clique2 and are not in
separator.

o Copy to the separator.probabilityFunction values in
linkage.clique2.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

89

 For each linkList.link which clique is linkage.clique2:
link.removeRedundancy()

 For each linkage.linkList.link:

 Link.absorbOut(fromAdjacent)
[link.originalLinkTable, link.newLinkTable,
link.v0/v1.potentialTable]

 For the subnetwork to what beliefs propagate:

 Absorb2()
Link.absorbIn(fromAdjacent):

 Copy clique.potentialTable to originalLinkTable
{link.clique.potentialTable}[link.originalLinkTable]

 Use the information received as newLinkTable.

 Copy values in newLinkTable to link.clique.PotentialTable.
{link.newLinkTable}[link.clique.potentialTable]

In short, take the corresponding part of clique link.v1/v2 and set it as
link.clique.potentialTable.

Link.absorbOut(fromAdjacent):

 Divide link.newLinkTable by originalLinkTable.
{link.originalLinkTable}[link.newLinkTable]
Multiply link.v0/v1.potentialTable by link.newLinkTable.potentialTable obtained.

{link.newLinkTable}[link.v0/v1.potentialTable]

SubNetwork.Absorb2():

This.jt.consistency()

This.updateMarginals() [nodeList.node.marginalList]

From BELIEFS_INITIALIZED_STATE to COMPILATION_DONE_STATE

Perform updating of beliefs according to list of received beliefs.

Every time a new belief update is received, the subnetwork goes back to this compilation state

and performs an update of the beliefs with the source subnetwork.

IV - 2.2.b.3. Absorbing pending compilation states

Between each compilation state, absorbPendingCompilationState method is called.

It reads the list of pendingCompilationStates and change the currentCompilationState according

to the petitions received.

This way, we can go back in the compilation process depending on the requirements introduced

in this list.

For example, let BELIEFS_INITIALIZED_STATE pending compilation state be added to the list,

when this pending compilation state is absorbed, the compilation goes back to

BELIEFS_INITIALIZED_STATE, where beliefs have already been initialized. Then, the compilation

continues from that compilation state.

Architecture and Design

90

IV - 2.2.b.4. Adding and propagating Beliefs

Add Finding

 Add the new evidence to the list of pending Beliefs and add a new pending compilation

state BELIEFS_INITIALIZED_STATE to go back to this state if necessary.

 When compilation reaches BELIEFS_INITIALIZED_STATE, the list of pending Beliefs is read

and the following is done:

o Set the evidence of this node to the number passed. [node.evidence]

o Set the marginal of this node according to the evidence set. {node.evidence}

[node.marginalList]

Update Evidences

 When a new finding is added, a new belief update is sent to each adjacent subnetwork.

 If a subnetwork receive a new belief update, it propagates this to each adjacent, but to

the subnetwork from which this belief update has been received. If receive two belief

updates at the same time from different subnetworks, it propagates this belief update to

all its adjacent subnetworks, included those from which it has received these belief

updates.

IV - 2.2.b.5. Attending received messages

Communication framework used, JGroups (see II - 6.1), allows asynchronous reception of

messages. This means that the reception of the messages is executed in a different thread than

compilation or other processes. Thus, a message can be needed to be received at any moment,

although its use be done at a different moment.

That is why there are several queues for different purpose received messages. Each message is

labeled with one of the following tags. In response to each received message, a way of

procedure is shown below.

publishNodes

 Add the information received about a subnetwork in the snInfo list.

 If any information is added, add a new pending compilation state INITIAL_RESET_STATE.

verifyCycles

 Try to mark all that nodes which can be marked. When a public node is marked, send a

new distributeMark message.

 If all nodes have been marked, send a notifyCycleVerificationDone to the root.

 If is the root subnetwork and all other subnetworks have completed the verification of

cycles, send a notifyCycleVerificationDone to all subnetworks.

distributeMark

 Set the node passed as marked. Another subnetwork has marked it.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

91

notifyMarkedChildNodes

 Set the child nodes from the sender subnetwork as marked to allow the marking of this

node.

notifyCycleVerificationDone

This message has a different meaning depending on which subnetwork sends it.

 If the sender is a subnetwork different from root, this message means that all nodes of

this subnetwork have been marked successfully.

 If the sender is the root subnetwork, this message means that all subnetworks have

marked all its nodes successfully.

addMarkovArcsFromMoralization or addMarkovArcsFromTriangulation

 Add the markov arcs passed to the list of received markov arcs corresponding to the

sender subnetwork.

 Add a new pending HYPERTREE_DONE_STATE compilation state.

transferBeliefsToAdjacent or transferBeliefsToParent

 Add a new pending belief update with the data received.

Architecture and Design

92

IV - 2.2.c. The keys of this architecture

After the full-detailed description of this architecture presented in section IV - 2.2.b.2, an

overview of the more important characteristics of this architecture is shown in this section.

These all features have been adopted during the analysis of the solution proposed and form the

base of the developed architecture.

IV - 2.2.c.1. Reactive behavior

In this architecture, each node has a reactive behavior. This means that each Hypernode do not

waste time of process trying to discover other Hypernodes or information about them.

To know the existence of other Hypernodes, each Hypernode that joins the group in JGroups

(that is initialize the communication process) publish the information that all other Hypernode

need to know about it. Publish the identifiers of all its public nodes, the identifier of the

Hypernode and the markov arcs that this Hypernode can share with other Hypernodes. This first

message is sent to all Hypernodes in the MSBN and allows all Hypernodes to know its place in

the Hypertree.

Likewise, a Hypernode do not need to ask for the fill-ins to its adjacent Hypernodes. Instead,

when a new fill-in is created, it is immediately communicated to the adjacent Hypernodes, which

have to recompile to incorporate the new information received.

Similarly, when new information is received from other Hypernode, according to the type of this

information, a Compilation Pending is added to the corresponding queue. Thus, the Hypernode

can recompile only those necessary steps to incorporate that information.

When a belief update is received from another subnetwork, this is queued to be absorb when

convenient.

IV - 2.2.c.2. Compilation executed in a separated thread

An only Hypernode has several threads to perform different task during its work. Mainly there

exist three threads associated to a Hypernode. The first thread exists only during the loading of

the Hypernode and is the responsible for the creation of the Hypernode and the other threads

without affect to the thread that launches this Hypernode. The second thread is created when

JGroups component is created associated to the Hypernode, and is the responsible for receiving

messages and adding the received information to the corresponding queue to be processed

later. The last thread is the compiler thread. Compiler thread is always trying to reach the

highest state of compilation. When the whole compilation is performed, this thread sleeps until

a new event occurs or any new information is received and going back in compilation is needed.

Summarizing, new events are always queued to be read when convenient.

IV - 2.2.c.3. Distributed Verification of cycles

The greatest difficulty in the developed system is the dynamism that it can manage. Before a

Hypernode can have reached compilation, a new Hypernode may have been added to the

MSBN.

In this scenario, we need to be able to check that the state of the created MSBN is the correct.

That means we need to check that there is not any cycle in the BN formed by the MSBN.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

93

To achieve this, a technique about marking nodes is followed, as described in [23]. Over the

technique described in this article, we have included several modifications that are summarized

below.

To carry out the verification, messages need to be sent between adjacent Hypernodes. Those

messages could be confused between different Hypertrees, causing a wrong verification result.

To avoid this, when a new Hypertree is built, after the discovering or falling of a Hypernode, root

Hypernode send a message to all Hypernodes assigning a new verification identifier. All

messages sent during this verification have this assigned identifier and verification messages

that contain an identifier different that current are dropped. Finally, when a Hypernode verifies

that it does not contain any cycle, this information is sent to the root, which is the responsible

for the knowledge of the state of the verification of the cycles in the MSBN.

To mark a node, sometimes a Hypernode needs to know if all Hypernodes that contains any

children of this node have already marked it. To allow this, when a Hypernode mark all children

of a public node, send a message to inform all Hypernodes that share this node about the event.

As each Hypernode knows, thank to the information sent in the publication of nodes made at

the beginning, the identifiers of all nodes relative to shared nodes, it can be achieved easily.

IV - 2.2.c.4. Moralization with all fill-ins received in the history

Fill-ins mean the same whether they come from moralization or from triangulation. Thus, when

a new fill-in is received in a Hypernode, compilation return to the beginning of moralization.

Across the history of a Hypernode, all received fill-ins are saved and included during

moralization.

However, when a Hypernode falls, all its adjacent Hypernodes check for the fill-ins that the fallen

Hypernode had sent to them, and remove those fill-ins.

As after the adding of a fill-in moralization results could have been changed, it is necessary that

triangulation be repeated again to be consistent with the results.

IV - 2.2.c.5. Linkage belongs to parent subnetwork

In the single-agent architecture, Linkages (the shared part between two Hypernodes) do not

belong to any Hypernode. They are just an object that the manager owns. However, this is an

obstacle to carry out a well-distributed system that can be scalable.

In this architecture, Linkages belong to the Hypernode that is associated by that Linkage and has

a highest position in Hypertree. This way, from two Hypernodes connected by a Linkage, the

parent one does not have any problem to carry out operations over the Linkage. Nevertheless,

the child Hypernode cannot operate directly over the Linkage. To solve this issue, child

Hypernode have to perform those operations to what it needs its private information before

sending the changes to perform in the Linkage to the parent Hypernode. Then, when the parent

Hypernode receives these semi-performed changes, it finishes the operation applying them over

the Linkage.

To maintain privacy, Linkages cannot have whole cliques that are connected by them. Then, its

Links only have host0 and clique. The host1 clique is not explicitly saved. The child subnetwork

adds the information received to the proper table by knowing only the names of the public

nodes shared in the clique.

Architecture and Design

94

IV - 2.2.c.6. Hypertree recalculated in each Hypernode

To avoid centralized paradigm, each Hypernode has to calculate the place it occupies in the

Hypertree. As all Hypernode have all relevant information to perform this operation, the same

operation is replicated in each Hypernode. This way, no messages are needed to build a correct

Hypertree, and segmentation of a MSBN in several ones is allowed if the Hypernodes that

connect them fail. It can be said that each Hypernode is independent from others, achieving the

autonomy in each part of the MSBN.

IV - 2.2.c.7. Essential information distributed to all nodes

Each Hypernode only shares the public information about itself. That allows the maintaining of

privacy, which is one of the main advantages of MSBN. Thus, each Hypernode only retain the

public information about other Hypernodes. This feature can make certain operations more

complicated than what they are sharing all information.

IV - 2.2.d. The issues of this architecture

Although developed architecture have fulfilled our expectations, there are some problems or

not desired featured that need to be taken into account. These features can be the subject of

future work to avoid potential problems that may be arisen.

IV - 2.2.d.1. Infinite updating cycle

In some situations, the including of new evidences can be done in different Hypernodes at the

same time. As the system is distributed and each Hypernode works in parallel, depending on the

situation and the delivery of the corresponding messages, updating cycle could result into an

infinite cycle of beliefs updating that have no end. This problem is fully discussed in [24]. This is

not properly a problem, in fact it has never been observed during the development of this

project, but could result into undesired behaviors.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

95

V - Test Plan

Test plan has the task of verifying the proper functioning of the developed system by checking

that it meets the requirements of performance.

To facilitate the understanding of the test plan used in the project, this chapter is structured by

presenting, first, the description of the model that has been used for test cases and, secondly, the

description of such cases and test results.

Test Plan

96

V - 1. Test Specification

In this section, we present an overview of the tests that have been done to verify the correction

and well functioning of the developed system.

Since synchronous architecture is not the target of this project, all tests described in this section

are related to Iterative Architecture, which should be the center of the attention of the reader

and is the great result of our work.

First, we present the test plan that has been done on the system and, second, an analysis of

requirements to check if they have been achieved and how much has been done.

V - 1.1. Unit Tests

Unit tests check that concrete parts of our developed system work correctly. As the developed

builds on already developed frameworks, such as UnBBayes or JGroups, we assume that those

frameworks work properly. Thus, unit tests corresponding to how an only Hypernode must react

under changes or events need to be implemented.

There exist two type of tests, those that check that something is sent correctly (Sender Tests),

and those that check that the reaction showed when something is received is performed

correctly (Receiver Tests).

V - 1.1.a. Sender Tests

V - 1.1.a.1. Initial Information – Sender Test

This test checks that a Hypernode initializes its compilation properly sending the corresponding

publication of shared information. In addition, it checks that the information contained in that

message is complete and correct.

V - 1.1.a.2. Sharing fill-ins from local moralization – Sender Test

This test checks that a Hypernode sends correctly all fill-ins that have been added during local

moralization.

V - 1.1.a.3. Sharing fill-ins from triangulation – Sender Test

This test checks that a Hypernode sends correctly all fill-ins that have been added during

triangulation process.

V - 1.1.a.4. Cycle verification – Sender Test

This test checks that a Hypernode send correctly the information needed for the verification of

non-existence of cycles in the whole MSBN. In addition, it checks that its own verification is

performed properly when communications are not needed.

V - 1.1.a.5. Finalization of cycle verification – Sender Test

This test checks that a Hypernode send the corresponding message to communicate to root

node that it has finished its own verification of cycles.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

97

V - 1.1.a.6. Transferring beliefs to parent – Sender Test

This test checks that a Hypernode, which is child of other Hypernode, sends the proper message

to transfer its beliefs to its parent. It also checks that all data in the probability tables passed is

correct.

V - 1.1.a.7. Transferring beliefs to adjacent subnetwork – Sender Test

This test checks that a Hypernode, which is parent of other Hypernode, sends the proper

message to transfer its beliefs to its adjacent Hypernode. Additionally, it checks that the proper

operations over Linkage are performed correctly by checking the results obtained. It also checks

that all data in the probability tables passed is correct.

V - 1.1.a.8. Stopping a Hypernode – Sender Test

This test checks that a Hypernode is stopped correctly. It is very important, among other

reasons, to allow an efficient test plan. Many problems have been found due to existing

Hypernodes from past tests that continue its communication in the network.

V - 1.1.b. Receiver Tests

V - 1.1.b.1. Initial Information – Receiver Test

This test checks that a Hypernode properly incorporates the received initial information about a

new Hypernode in the group. In addition, it checks that the information incorporated to the

knowledge of the Hypernode is complete and correct.

V - 1.1.b.2. State Information – Receiver Test

This test checks that a Hypernode, which is new in the group, receives an incorporates correctly

the information about existing Hypernodes, which is passed as the state of the group.

V - 1.1.b.3. Sharing fill-ins from local moralization – Receiver Test

This test checks that a Hypernode receives and incorporates correctly all fill-ins that have been

added during local moralization of other Hypernode. In addition, it must result in the return to a

passed compilation state.

V - 1.1.b.4. Sharing fill-ins from triangulation – Receiver Test

This test checks that a Hypernode receives and incorporates correctly all fill-ins that have been

added during triangulation process of other Hypernode. In addition, it must result in the return

to a passed compilation state.

V - 1.1.b.5. Cycle verification – Receiver Test

This test checks that a Hypernode receives correctly the information needed for the verification

of non-existence of cycles in the whole MSBN and continue its own verification with the new

information added. In addition, it checks that its own verification is performed properly with the

new information.

Test Plan

98

V - 1.1.b.6. Finalization of cycle verification – Receiver Test

This test checks that the root Hypernode receives the corresponding messages to communicate

that other Hypernodes have finished its own verification of cycles. In consequence, it checks that

root Hypernode checks if all Hypernodes have already finished and if the message to

communicate that cycle verification has finalized is sent correctly.

V - 1.1.b.7. Transferring beliefs to parent – Receiver Test

This test checks that a Hypernode, which is parent of other Hypernode, receives the proper

message to receive new beliefs from its child. It also checks that all data in the probability tables

passed is correct, and that all beliefs and marginals are correct after performing the beliefs

update.

V - 1.1.b.8. Transferring beliefs to adjacent subnetwork – Receiver Test

This test checks that a Hypernode, which is child of other Hypernode, receives the proper

message to receive new beliefs from its parent. It also checks that all data in the probability

tables passed is correct, and that all beliefs and marginals are correct after performing the

beliefs update.

V - 1.2. Integration Tests

Once Unit test have been passed, the complete functionality of a Hypernode in the MSBN is

probed. Nevertheless, when more than two Hypernodes form part of the MSBN, different

situations are presented that need to be taken into account.

For this purpose, different MSBN have been developed to allow the performing of those tests.

For each proposed MSBN, full compilation process is checked and, after compilation has

finished, some evidences are added to check that belief updating is performed correctly.

The tests contained in this section are sorted according to the size of the MSBN used. Thus, the

first test presented correspond to a little MSBN that consists of just two Hypernodes, each of

which has two nodes, and the last test presented correspond to a huge MSBN that consist of five

Hypernodes, each of which have at least four nodes. In all cases, used MSBNs are extremely

small compared with those that would be used in a real scenario.

V - 1.2.a. Test using Ridiculous MSBN

This test uses the smallest MSBN that can be built. The MSBN used in this test is shown in Figure

V-1.

Figure V-1 Ridiculous MSBN representation

5part2c 5part1c

var_0 A A var_2

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

99

V - 1.2.b. Test using Little MSBN

This test uses a small MSBN that contains a V structure. The MSBN used in this test is shown in

Figure V-2.

Figure V-2 Little MSBN Representation

V - 1.2.c. Test using Medium Size MSBN

This test uses a three-Hypernode MSBN that involves the adding of fill-ins during moralization

process but not during triangulation. The MSBN used in this test is shown in Figure V-3.

Figure V-3 Medium size MSBN representation

V - 1.2.d. Test using 2-subnetwork MSBN

This test uses a simple two-Hypernode MSBN that allows the experimentation of testing with a

non very difficult MSBN. The MSBN used in this test is shown in Figure V-4.

Figure V-4 2-subnetwork MSBN representation

5part2c 5part1c

var_0

var_1 A

B

A

B

var_2 var_4

5part2c 5part3c 5part1c

var_0

var_1 A

B B

D var_5 D

var_3

5part2c 5part1c

var_0

var_1 A

B

A

B

var_2

Test Plan

100

V - 1.2.e. Test using 3-subnetwork MSBN

This test uses a three-Hypernode MSBN with a not quite difficult structure that involves the

adding of fill-ins during moralization and triangulation processes. The MSBN used in this test is

shown in Figure V-5.

Figure V-5 3-subnetwork MSBN representation

V - 1.2.f. Test using Acyclic MSBN

This test uses a three-Hypernode MSBN that contains a cycle among the three Hypernodes to

check that cycle verification works properly. The MSBN used in this test is shown in Figure V-6.

Figure V-6 Acyclic MSBN representation

D3 D1 D2

e

f

c

d

a

b

a

b

l

m

n

j

k

g

h

i

o

j

k

5part2c 5part3c 5part1c

var_0

var_1 A

B

A

B

var_2

C

D var_5

E C

D

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

101

V - 1.2.g. Test using Cyclic MSBN

This test uses a three-Hypernode MSBN that does not contain any cycle to check that cycle

verification works properly. The MSBN used in this test is shown in Figure V-7.

Figure V-7 Cyclic MSBN representation

V - 1.2.h. Test using 5partc MSBN

This test uses a commonly used MSBN in MSBN framework developing. This MSBN contains

several V structures that provoke the adding of fill-ins in moralization, as well as during

triangulation.

Moreover, this MSBN has a complex Hypertree structure building due to shared nodes between

Hypernodes is a little intricate. Such structure can result into Hypertree cycles if is not built

correctly, fact by which this is a very suitable MSBN to prove that our framework is working

properly.

The MSBN used in this test is shown in Figure V-8.

Figure V-8 5partc MSBN representation

5part2c

5part4c

5part5c 5part3c

5part1c

var_0

var_1 A

B

A

B

var_2 C

D

var_5

E C

D

var_4

var_3

F

var_6

E C F

G

H

var_9 var_8

var_7

var_11

var_12

var_10

G

H

D3 D1 D2

e

f

c

d

a

b

a

b

l

m

n

j

k

g

h

i

o

j

k

Test Plan

102

V - 1.3. Adaptability Tests

To check that adaptability requirements are satisfied, the following adaptability tests are done.

V - 1.3.a. Apparition of a new Hypernode

This test uses a three-Hypernode MSBN known as 3-subnetwork MSBN (see Figure V-5). The test

starts with an only Hypernode alive. Then, two more are created and they should be added to

the existing MSBN.

V - 1.3.b. Falling of an existing Hypernode

This test uses a three-Hypernode MSBN known as 3-subnetwork MSBN (see Figure V-5). The test

starts with the three Hypernodes alive and calls stop method for the second one. Then, when

the MSBN is restructured, the first Hypernode is stopped and the MSBN needs to be

restructured again.

V - 1.3.c. Two existing MSBN join into an only MSBN

This test uses a three-Hypernode MSBN known as 3-subnetwork MSBN (see Figure V-5). The test

starts with two non-adjacent Hypernodes alive, which are considered as two separated MSBNs.

Then, the third Hypernode is created, what should result into the restructuration of the whole

MSBN to be an only MSBN.

V - 2. Test Results

In this section, we analyze the results obtained to the tests described in section V - 1. To facilitate the task of revise
these results, we have decided to show them in

Table V-1.

Each test has an identifier that is taken from the numeration of this report. Thus, test from point

V - 1.1.b.3, will be associated with the identifier 1.b.3.

For each test, is associated a punctuation that can vary from zero to five, meaning zero that this

test is not passed at all, and five that this test satisfy all requirements presented. Punctuations

that are in the middle mean, one that this test satisfy some requirements, two that this test

satisfy hardly all requirements, and four that this test satisfy all requirements but can present

some problems depending on the scenario conditions.

Id. Punctuation Comments

1.a.1 5

1.a.2 5

1.a.3 5

1.a.4 5

1.a.5 5

1.a.6 5

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

103

1.a.7 5

1.a.8 4

When a test fails or need to be stopped manually due to it is
blocked, stop is not performed correctly. In that situation, its
needed to execute manually killall -9 java (in linux os) to
eliminate all existing processes that continue running.

1.b.1 5

1.b.2 5

1.b.3 5

1.b.4 5

1.b.5 5

1.b.6 3

Although verification is performed perfectly, the information
resulting from this process is not used yet. It should be necessary
a checking of the structure verification state before the beginning
of belief updating.

1.b.7 4

Iterative paradigm involves a certain degree of uncertainty about
the time in which the beliefs are updated. Thus, depending on the
communication situation, verification of this test can incorrectly
fail due to those time issues. Although several mechanisms have
been developed to avoid these situations, those mechanisms are
not always working correctly, what implies some incorrect
situations.

1.b.8 4

Iterative paradigm involves a certain degree of uncertainty about
the time in which the beliefs are updated. Thus, depending on the
communication situation, verification of this test can incorrectly
fail due to those time issues. Although several mechanisms have
been developed to avoid these situations, those mechanisms are
not always working correctly, what implies some incorrect
situations.

2.a 5

2.b 5

2.c 5

2.d 5

2.e 4
It hardly never fails due to JGroups merging of views or dropped
or disordered of messages.

2.f 5

2.g 5

2.h 4
It almost always fails due to JGroups merging of views or dropped
or disordered of messages.

3.a 5

3.b 5

3.c 5

Table V-1 Test results summary

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

105

VI - Case study: FTTH

The case study proposed builds on FTTH scenario.

In this chapter, we present an architecture that uses the developed MSBN framework to perform

the diagnosis and solving of failures in the FTTH scenario.

First, a brief introduction to FTTH scenario is given. Second, a description of the proposed

reasoning system is given. Third, model proposed to simulate FTTH scenario is presented. Finally,

the corresponding MSBN that allows the diagnosis, inference and reasoning over the proposed

simulated scenario is described.

Case study: FTTH

106

VI - 1. FTTH Scenario

Our case study is the scenario described in this section. This scenario is based in the FTTH-GPON

(Fiber to the Home - Gigabit Passive Optical Network) architecture. This architecture use passive

splitters to carry the signal to the final users. In this architecture, every user receives all

information of the tree, but encrypting, each user processes only his information.

In this scenario, there are the following important devices:

 OLT – Optical Line Terminal (Active device)

 Splitter (Passive device)

 ONT – Optical Network Terminal (Active device)

 RGW – Router Gateway (Active device)

This list of devices exists per user in the scenario. In other words, there is at least one of these

components per user. Several devices (like OLT or splitters) are shared to offer services to

several users at the same time.

Figure VI-1 FTTH scenario

With the capacity of this technology, it is able to offer 2.5 GB/s to 64 users. In other words, each

line from OLT has this capacity, but this line is shared between up to 64 users. Despite sharing

the fiber, this architecture supports the providing of several services (IPTV, VoIP, data

connection, etc.) at same time. However, even more, this technology can be improved with

WDM (Wavelength-Division Multiplexing) to obtain more bandwidth and, at this way, provide

more services.

This scenario consists on an operator that provides several services to final users through a

FTTH-GPON architecture based in the image shown below.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

107

Figure VI-2 FTTH scenario with splitter divisions

The topology of the access network is shown in the figure: two splitters between each ONT and

its OLT. The first splitter from OLT divides the signal into 4, and the second one divides it into 16.

Then, 64 users (one ONT and one RGW per user) per OLT have access to the network.

VI - 2. Proposed reasoning system

The reasoning system proposed over the FTTH scenario consists of a Multi-agent system

distributed across the whole scenario.

Each active device has an associated agent, which perform tests over the device and extracts

some information to allow reasoning. Each of those agents has an associated Hypernode that

belongs to a MSBN shared between all agents. According to the collected information about the

device, the Hypernode related to the agent is updated, allowing global inference and reasoning

having into account the information collected in all devices.

To allow this system, each active device in the FTTH scenario should have a higher processing

capacity than in a normal FTTH scenario.

Exploiting the feature of the developed MSBN framework that make it adaptable to falls and

recovering of nodes, this whole system is able to reason in spite of the situation of the scenario.

This is, if an optic fiber is damaged, the reasoning system can continue its work and discover

where the failure is, despite of it has unconnected nodes.

Internally, each agent can have different structures. Nevertheless, in our work we have chosen

to use BDI agents. That mean each agent is divided internally in a Beliefs-Desires-Intentions

structure.

Beliefs are the knowledge that the agent contains. Beliefs represent the informational state of

the agent, in other words its beliefs about the world (including itself and other agents). Beliefs

can also include inference rules, allowing forward chaining to lead to new beliefs. Using the term

Case study: FTTH

108

belief rather than knowledge recognizes that what an agent believes may not necessarily be true

(and in fact may change in the future).

Desires represent the motivational state of the agent. They represent objectives or situations

that the agent would like to accomplish or bring about.

Intentions represent the deliberative state of the agent, what the agent has chosen to do.

Intentions are desires to which the agent has to some extent committed. In implemented

systems, this means the agent has begun executing a plan.

Inside BDI model, the MSBN is another belief contained in the belief base of the agent. Thus,

MSBN information can be accessed as one more piece of agent’s knowledge and is used to

control the behavior of the agents.

All agents can reason together using MSBN framework. This framework abstract programmer

from belief updating and makes easier the way of reasoning in the BDI agent environment.

VI - 3. Proposed simulation model

To simulate the reasoning system proposed in section VI - 2 a simple model is proposed. MASON

simulation framework provides an easy way of simulate an agent environment with little effort

[25].

To simulate the FTTH scenario, a class hierarchy is needed. In this set of classes, each device has

a software representation with different available states that must be related with real ones.

For this purpose, classes needed to represent FTTH scenario have been developed. To facilitate

the comprehension of the reader, class diagram shown in Figure VI-3 is provided.

Figure VI-3 Class diagram for the proposed simulation model

According to FTTH scenario, the proposed simulation model have a representation for one of

each devices included in the scenario. The more important device is OLT, which has several

interfaces and is connected to the core of the network. Thus, several links can connect the OLT

to the first splitter (splitter1). This first splitter splits the communication channel into four fibers

to the second splitter (splitter2). The second splitter splits the communication channel into 16

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

109

fibers to the OLT. The OLT is the responsible for converting optic signals to electric signals.

Therefore, if we abstract from the optic fibers and splitters, which are all passive devices, OLT

and ONT devices have a direct communication. Following the ONT, Gateway is connected to

provide connection to the HAN (Home Area Network). Depending on the situation, different

users are connected to the HAN.

VI - 4. MSBN for the case study

The proposed case study deals with a streaming connection between a streaming server and a

client. Both server and client are situated in a different HANs of the FTTH scenario.

Distributed across the whole scenario there is a MSBN as can be seen in Figure VI-4.

It is divided according to devices present in the scenario, and only information in yellow is

shared between Hypernodes.

In general, evidences taken from the scenario are colored in blue. However, several shared

nodes are evidences too, such as OLT-ReceivedPower or ONT1-InputBitrate.

Case study: FTTH

110

Figure VI-4 MSBN for FTTH Scenario

OLT

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

111

Server1 ONT1

ONT2
GW2

Client1

GW1

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

113

Conclusion

Most tasks performed by humans, as far as communications systems are concerned, could be

performed by expert systems. Specifically, referring to network issues, more dynamic and

precise systems and offering better features could be developed aided by expert systems. The

future of our networks is self-organizing networks: self-configuration, self-optimization and self-

healing. Expert systems have an essential role in this vision and it is our job to make it possible.

In this project, we have developed a reliable framework that allows reasoning across distributed

belief networks. Based on Bayesian networks, this framework maintains coherence and

consistency between the beliefs of different nodes, as well as it is able to handle uncertainty

inherent to hardly any type of knowledge. The developed tool is scalable, stable, tolerant to

communication failures, and portable. It uses asynchronous communication to maintain the

independence between nodes. Thus, each node in the belief network is autonomous, and can

reason with all the information it get, both its own information and external data obtained from

other nodes.

Nevertheless, other improvements can be done to this framework. In this project, we have

presented several functionalities that have not been totally included in the resulting framework.

These pending features have been introduced in this report, and form the basis for future work

in this field. Some of this future work is summarized below.

The developed framework performs the detection of cycles in the computed global graph. The

continuation to this work should make sure a correction of situations where cycles appear is

done, allowing the operation of this framework in more complex and dynamic systems.

Before the propagation of beliefs between different nodes takes place, their initialization is

needed. Currently, this initialization is performed following a hierarchical structure. To give more

realistic and accurate results, it would be necessary to implement a belief initialization technique

to weigh the knowledge of each node in terms of the relevance of the node.

In conclusion, this distributed reasoning framework is able to adapt to different scenarios or

situations. This framework can be used in a huge variety of applications in which distributed

reasoning can provide a great advantage. An application of this framework to a concrete

scenario is presented in this report. The application in FTTH scenarios serves as an example for

future developments. It remains as future work, the use of this framework in other scenarios to

bring out the potential application field this framework can have.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

115

Bibliography

[1] J. G. O. Álvaro Carrera, J. Garcia-Algarra, P. Arozarena, and M. Garijo, “A Multi-Agent
System with Distributed Bayesian Reasoning for Network Fault Diagnosis,” in Advances on
Practical Applications of Agents and Multiagent Systems: 9th International Conference on
Practical Applications of Agents and Multiagent Systems, 2011, vol. 88, p. 113.

[2] D. Li and Y. Du, Artificial intelligence with uncertainty. Tsinghua University; Beijing. China:
CRC Press, 2008.

[3] D. B. Leake, “Case-based reasoning,” The Knowledge Engeneering Review, vol. 9, pp. 196-
197, Jan. 1994.

[4] D. Zhang, “Multi-agent based control of large-scale complex systems employing
distributed dynamic inference engine,” 2010.

[5] F. Hayes-Roth, “Rule-based systems,” Communications of the ACM, vol. 28, no. 9, pp.
921–932, 1985.

[6] L. Zadeh, “Fuzzy logic,” Computer, 1988.

[7] U. B. Kjærulff and A. L. Madsen, Bayesian Networks and Influence Diagrams. Springer
New York, 2008, pp. 3-15.

[8] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 1988.

[9] G. Pavlin, M. Mans, and J. Nunnink, “An agent-based approach to distributed data and
information fusion,” in Intelligent Agent Technology, 2004.(IAT 2004). Proceedings.
IEEE/WIC/ACM International Conference on, 2004, pp. 466–470.

[10] M. A. Paskin and C. E. Guestrin, “Robust probabilistic inference in distributed systems,” in
Proceedings of the 20th conference on Uncertainty in artificial intelligence, 2004, pp. 436–
445.

[11] K. B. Laskey, P. Costa, and T. Janssen, “Probabilistic ontologies for knowledge fusion,” in
Information Fusion, 2008 11th International Conference on, 2008, pp. 1–8.

[12] F. Jensen, “Bayesian networks and influence diagrams,” Risk Management Strategies in
Agriculture; Huirne et ….

[13] F. V. Jensen and T. D. Nielsen, Bayesian networks and decision graphs. Springer Verlag,
2007.

[14] S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen, “HUGIN—a shell for building
Bayesian belief universes for expert systems,” in Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, 1989, vol. 2, pp. 1080–1085.

[15] L. Getoor and B. Taskar, “Introduction to statistical relational learning,” MIT Press, 2007.

Bibliography

116

[16] F. Jensen, “An introduction to Bayesian networks,” 1996.

[17] P. P. Shenoy, “Binary join trees for computing marginals in the Shenoy-Shafer
architecture,” International Journal of Approximate Reasoning, vol. 17, no. 2-3, pp. 239–
263, 1997.

[18] A. Darwiche, “Recursive conditioning,” Artificial Intelligence, 2001.

[19] P. Costa and M. Ladeira, “A first-order bayesian tool for probabilistic ontologies,”
Proceedings of the 21st …, 2008.

[20] Y. Xiang and V. Lesser, “Justifying multiply sectioned Bayesian networks,” in icccn, 2000,
p. 0349.

[21] Z. Ras, M. Zemankova, and Y. Xiang, Distributed multi-agent probabilistic reasoning with
Bayesian networks - Methodologies for Intelligent Systems - Lecture Notes in Computer
Science, vol. 869. Springer Berlin / Heidelberg, 1994, pp. 285-294-294.

[22] Y. Xiang, “Distributed scheduling of multiagent communication,” in Proceedings of the
First International Conference on Multi-Agent Systems (ICMAS-95), 1995, p. 390.

[23] Y. Xiang, “Verification of DAG structures in cooperative belief network-based multiagent
systems,” Networks, vol. 31, no. 3, pp. 183–191, 1998.

[24] X. An and N. Cercone, “Iterative multiagent probabilistic inference,” in Proceedings of the
IEEE/WIC/ACM international conference on Intelligent Agent Technology, 2006, pp. 240–
246.

[25] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, “MASON: A multiagent
simulation environment,” Simulation, vol. 81, no. 7, p. 517, 2005.

[26] S. Company, “Maven: the definitive guide,” 2008.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

117

Glossary

TERM CONCEPT

BN Bayesian Network

CPT Conditional Probability Table

DAG Directed Acyclic Graph

DPN Distributed Perception Network

FOL First-Order Logic

First-order logic is distinguished from propositional logic by its use of
quantifiers. Each interpretation of first-order logic includes a domain of
discourse over which the quantifiers range.

FTTH Fiber to the Home

Scenario in which fiber is available directly to the customer’s home provided
by GPON directly from the CO (Central Office)-based OLT.

GPON Gigabit-capable Passive Optical Network

Standard that support high rates, enhanced security, and choice of Layer 2
protocol (ATM, GEM, Ethernet).

HAN Home Area Network

IA Intelligent Agent

An autonomous entity which observes and acts upon an environment and
directs its activity towards achieving goals.

JPD Joint Probability Distribution

JT Junction Tree

LAN Local Area Network

MAS Multi-Agent System

A system composed of multiple interacting intelligent agents.

MEBN Multiply Entity Bayesian Network

A first-order probabilistic logic that combines the representational power of
first-order logic and Bayesian networks.

MFrags MEBN fragments

MSBN Multiply Sectioned Bayesian Network

MSDAG Multiply Sectioned DAG

MTheories MEBN Theories

A set of MFrags collectively satisfies consistency constraints ensuring the
existence of a unique joint probability distribution over instances of the
random variables mentioned in the MFrags.

Glossary

118

OLT Optical Line Terminal

Active device which serves as the service provider endpoint of a passive
optical network. It performs conversion between the electrical signals used by
the service provider’s equipment and the fiber optic signals used by the
passive optical network and coordinate the multiplexing between the
conversion devices on the other end of that network (ONTs).

ONT Optical Network Terminal

Active device used to terminate the fiber optic line, demultiplex the signal into
its component parts (voice telephone, television, and Internet), and provide
power to customer telephones.

OWL Web Ontology Language

Family of knowledge representation languages for authoring ontologies. OWL
can be used to explicitly represent the meaning of terms in vocabularies and
the relationships between those terms.

PLDM Prior / Likelihood Decomposable Models

PR-OWL Probabilistic OWL

RPC Remote Procedure Call

SAS Single-Agent System

A system composed of a single intelligent agent.

WDM Wavelength-Division Multiplexing

A technology multiplexes a number of optical carrier signals onto a single
optical fiber by using different wavelengths of laser light. This technique
enables bidirectional communications over one strand of fiber, as well as
multiplication of capacity.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

119

Appendix 1. Developer manual

This chapter is intended to present the project thinking on a developer that continues the work

done so far. Thus, this manual is intended as an initial reference point and reference for future

iterations that new developers join the project with the consequent lack of diagnostic system

present in multi-agent project.

1. Subversion

All developed source has been saved and organized using the subversion plugin integrated with

eclipse (subclipse).

Each change done has been documented with the corresponding information written in English

language.

Inside a commentary, the first words are always the more relevant ones while last words are

other interesting details about the performed changes. The convention used is that the first

sentences always indicates the state of the code. It shows if the code is completely working or if

it has any detected bug or unsolved situation that needs to be specially cared by the developer.

Subversion repository used has been Fibit project repository. Inside trunk folder, MSBN folder

contains all developed source about this project.

As UnBBayes has not been included in Maven repositories yet, the whole UnBBayes main project

has been uploaded to Fibit subversion repository. Only a little change has been done over this

project, which is the modification of pom.xml maven file to allow the skipping of UnBBayes tests

during the installation of this in local Maven repository.

Figure VI-5 Subversion directory structure

Appendix 1: Developer manual

120

Inside MSBN folder, the version of this project that uses synchronous architecture is contained.

The important classes are in the path src/main/java/unbbayes/prs/msbn. Test classes and

examples are in the path src/main/java/unbbayes/example/multi, while single folder contains

examples for the original MSBN version (Single-agent) provided by UnBBayes.

MSBNAgents folder contains the agent framework developed for multi-agent synchronous

architecture using Jadex agent platform.

Finally, MSBNjGroups folder contains the multi-agent iterative MSBN framework developed as

result of this project. Despite it also contains single and multi versions, multiIterative folders are

those that contain the multi-agent iterative MSBN framework. The most important classes can

be found in the path src/main/java/unbbayes/prs/msbn/multi_iterative. In addition, examples

and tests can be found in the path src/main/java/unbbayes/example/multi_iterative.

2. Maven

All projects developed use Maven to automate compilation and building of the project, as well

as dependencies management [26].

To use this tool, we have used the Maven plugin for eclipse m2eclipse, which let as saving some

time and efforts.

As UnBBayes is not part of Maven repositories yet, the first project that needs to be installed is

UnBBayes project. For that purpose, we must download or import UnBBayes’ project using

subclipse and click on run as / maven install in the secondary menu of the project.

After UnBBayes’ project is installed in the local Maven repository, all other project can be

installed by proceeding the same way.

Bayesian Reasoning Module for BDI agent architectures. Application for diagnosis in FTTH networks

121

Appendix 2. Installation manual

1. Install Java JDK6

Windows:

1. Download and install Java JDK 6: JDK6. A 32bit version is needed for JpCap to work.
2. Set 'JAVA_HOME' environment variable to point to installation directory. For example:

'C:\Program Files\Java\jdk1.6.0_25'.
3. Add '%JAVA_HOME%\bin' to 'path' environment variable.

Ubuntu:

1. Uninstall Open JDK if it's installed in your system.
2. Download and install Java JDK 6: JDK6. A 32bit version is needed for JpCap to work.
3. Add this location to the path by modifying '.bashrc' file located in your home folder. For

example, the following lines could be added to '.bashrc' file:

export JAVA_HOME=/home/username/Descargas/JAVA/jdk1.6.0_23

export PATH=$JAVA_HOME/bin:$PATH

2. Install Maven

Windows:

1. Download the last version of Maven2 .zip from Maven_2.2.1.
2. Unzip it in the location where you want to have it installed.
3. Modify the path by adding the location of the bin directory located inside the unzipped

folder. For example: C:\Program Files\apache-maven-2.2.1\bin.
4. Test Maven2 runs correctly by writing 'mvn' in the console.

Ubuntu:

Go to Synaptics Package Manager and install maven2.

3. Install Eclipse and proper plugins

1. Download and install Eclipse Classic: Eclipse
2. Set in .ini file in eclipse folder, the launching option

 -vm

 C:/...path_to_java_jdk.../bin

3. Install Subclipse_1.4 plugin: Subclipse_1.4
4. Install m2eclipse plugin: m2eclipse

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html#Maven_2.2.1
http://www.eclipse.org/downloads/
http://subclipse.tigris.org/
http://m2eclipse.sonatype.org/installing-m2eclipse.html

Appendix 2: Installation manual

122

4. Prepare the project and install dependencies:

1. Download UnBBayes project from svn:
http://lab.gsi.dit.upm.es/svn/fibit/trunk/MSBN/UnBBayes/UnBBayes

2. Download MSBN project from svn:
http://lab.gsi.dit.upm.es/svn/fibit/trunk/MSBN/MSBNjGroups

3. Execute Maven Install over the whole project of UnBBayes.
4. Execute Maven Install over the whole project of MSBN.

	Portada
	Resumen
	Palabras Clave
	Abstract
	Keywords
	Acknowledgements
	Contents
	I - Introduction
	I - 1. Project motivation
	I - 2. Summary of proposed solution
	I - 3. Structure of this project report

	II - State of the art
	II - 1. Introduction
	II - 1.1. Distributed Reasoning
	II - 1.2. Reasoning under Uncertainty
	II - 1.3. Agent Paradigm and BDI model

	II - 2. Reasoning Techniques
	II - 2.1. Case-based reasoning
	II - 2.2. Rule-based systems
	II - 2.3. Fuzzy logic
	II - 2.4. Bayesian Reasoning
	Bayesian Networks
	Distributed Bayesian Networks

	II - 3. Distributed Reasoning with uncertainty
	I -
	II -
	II - 1.
	II - 2.
	II - 2.1.
	II - 2.2.
	I -
	II -
	II - 1.
	II - 2.
	II - 2.1.
	II - 2.2.

	II - 3.1. Multiply Sectioned Bayesian Networks
	II - 3.2. Distributed Perception Networks
	Static Modeling Agents
	Dynamic Modeling Agents
	Appendable Modeling Components
	Algorithm 1: Top down network configuration
	Algorithm 2: Bottom-up Network Configuration

	II - 3.3. Prior / Likelihood Decomposable Models
	II - 3.4. Multiply Entity Bayesian Networks
	MFrag
	MTheory

	II - 4. Bayesian Networks
	II - 4.1. Definition
	II - 4.2. Inference in Bayesian Networks
	Conditional Probabilities
	Evidence / observations rule
	Product Rule
	Marginalization
	Chain Rule

	II - 4.3. Hugin Architecture: Junction Tree of a Bayesian Network
	Junction Tree
	Phases
	Initialization Phase
	Global Propagation
	Absorb mechanism

	II - 4.4. Building Bayesian Networks
	II - 4.5. Inference Engines
	II - 4.5.a. SamIam
	II - 4.5.b. Algorithms implemented in SamIam
	II - 4.5.b.1. Hugin Algorithm
	II - 4.5.b.2. Shenoy-Shafer Algorithm
	II - 4.5.b.3. Combination Hugin & Shenoy-Shafer Algorithms
	II - 4.5.b.4. Recursive Conditioning Algorithm

	II - 4.5.c. UnBBayes
	II - 4.5.d. Algorithms implemented in UnBBayes
	II - 4.5.d.1. Hugin Algorithm

	II - 4.5.e. Genie & Smile
	II - 4.5.f. Netica
	II - 4.5.g. File formats used by inference engines

	II - 4.6. Directed Cycles in Graphical Models

	II - 5. Multiply Sectioned Bayesian Networks in detail
	II - 5.1. MSBN Framework
	D-Sepset
	Hypertree MSDAG
	Building a Hypertree MSDAG
	Public Nodes
	Hypernode
	Link
	Hyperlink
	Linkage Tree

	II - 5.2. MSBN Phases
	II - 5.3. Compilation process
	II - 5.3.a. Build Hypertree
	II - 5.3.b. Moralize
	II - 5.3.c. Triangulate
	II - 5.3.d. Compile Junction Tree
	II - 5.3.e. Make Linkage Tree
	II - 5.3.f. Initialize Beliefs

	II - 5.4. Synchronous architecture for Single-Agent MSBN
	Off-line time

	II - 6. Distributed Communication Frameworks
	II - 6.1. JGroups
	Flexible Protocol Stack and Reliable Communications

	II - 6.2. Hazelcast

	III - Analysis
	III - 1. Scenario
	III - 2. Use Cases
	III - 2.1. Actors
	III - 2.2. Use Case 1: Loading and operation of the MSBN
	III -
	III - 1.
	III - 2.
	III - 2.1.
	III - 2.2.
	III - 2.2.a. Description
	III - 2.2.b. Use Case Specification
	III - 2.2.c. Use Case Diagram

	III - 2.3. Use Case 2: Adaptation of the system
	III - 2.3.a. Description
	III - 2.3.b. Use Case Specification
	III - 2.3.c. Use Case Diagram

	III - 3. Requirements
	III - 3.1. Functional Requirements
	III - 3.2. Non-Functional Requirements
	III - 3.3. Requirements Summary

	III - 4. Tools comparison
	III - 4.1. Reasoning Techniques Comparison
	III - 4.1.a. Comparison of reasoning techniques
	III - 4.1.b. Comparison: Fuzzy Logic vs. Bayesian Reasoning
	Result Analysis: Complexity Degree
	Result Analysis: Differences between both models

	III - 4.1.c. Our choice: Bayesian Reasoning

	III - 4.2. Distributed Reasoning: MSBN, our choice
	III - 4.3. BN Inference Frameworks: UnBBayes, our choice
	III - 4.4. Distributed Communication Frameworks: JGroups, our choice

	IV - Architecture and Design
	IV - 1. System parts
	IV - 2. Developed MSBN Architectures
	IV - 2.1. Synchronous Architecture for Multi-Agent MSBN
	IV - 2.1.a. Introduction
	Notation used in this section
	Communication Framework
	Class Diagram
	State Diagram

	IV - 2.1.b. Detailed Description
	IV - 2.1.b.1. Compilation
	From ANY_STATE to INITIAL_STATE
	From INITIAL_STATE to INITIAL_RESET_STATE
	From INITIAL_RESET_STATE to HYPERTREE_DONE_STATE
	From HYPERTREE_DONE_STATE to MORALIZATION_INITIALIZED_STATE
	From MORALIZATION_INITIALIZED_STATE to MORALIZATION_DONE_STATE
	From MORALIZATION_DONE_STATE to TRIANGULATION_INITIALIZED_STATE
	From TRIANGULATION_INITIALIZED_STATE to TRIANGULATION_DONE_STATE
	From TRIANGULATION_DONE_STATE to JUNCTION_TREE_COMPILED_STATE
	From JUNCTION_TREE_COMPILED_STATE to LINKAGE_TREE_MADE_STATE
	From LINKAGE_TREE_MADE_STATE to BELIEFS_INITIALIZED_STATE
	From BELIEFS_INITIALIZED_STATE to COMPILATION_DONE_STATE

	IV - 2.1.b.2. Adding and propagating Beliefs
	Add Finding
	Update Evidences (at SubNetwork class)
	Shift Attention from a subnetwork to another

	IV - 2.2. Iterative Architecture for Multi-Agent MSBN
	IV - 2.2.a. Introduction
	Notation used in this section
	Communication Framework
	Class Diagram
	State Diagram

	IV - 2.2.b. Detailed Description
	IV - 2.2.b.1. Initialization
	Create a new SubNetworkPart
	Start
	StartInTheSameThread

	IV - 2.2.b.2. Compilation
	From ANY_STATE to INITIAL_STATE
	From INITIAL_STATE to INITIAL_RESET_STATE
	From INITIAL_RESET_STATE to HYPERTREE_DONE_STATE
	From HYPERTREE_DONE_STATE to MORALIZATION_INITIALIZED_STATE
	From MORALIZATION_INITIALIZED_STATE to MORALIZATION_DONE_STATE
	From MORALIZATION_DONE_STATE to TRIANGULATION_INITIALIZED_STATE
	From TRIANGULATION_INITIALIZED_STATE to TRIANGULATION_DONE_STATE
	From TRIANGULATION_DONE_STATE to JUNCTION_TREE_COMPILED_STATE
	From JUNCTION_TREE_COMPILED_STATE to LINKAGE_TREE_MADE_STATE
	From LINKAGE_TREE_MADE_STATE to BELIEFS_INITIALIZED_STATE
	From BELIEFS_INITIALIZED_STATE to COMPILATION_DONE_STATE

	IV - 2.2.b.3. Absorbing pending compilation states
	IV - 2.2.b.4. Adding and propagating Beliefs
	Add Finding
	Update Evidences

	IV - 2.2.b.5. Attending received messages
	publishNodes
	verifyCycles
	distributeMark
	notifyMarkedChildNodes
	notifyCycleVerificationDone
	addMarkovArcsFromMoralization or addMarkovArcsFromTriangulation
	transferBeliefsToAdjacent or transferBeliefsToParent

	IV - 2.2.c. The keys of this architecture
	IV - 2.2.c.1. Reactive behavior
	IV - 2.2.c.2. Compilation executed in a separated thread
	IV - 2.2.c.3. Distributed Verification of cycles
	IV - 2.2.c.4. Moralization with all fill-ins received in the history
	IV - 2.2.c.5. Linkage belongs to parent subnetwork
	IV - 2.2.c.6. Hypertree recalculated in each Hypernode
	IV - 2.2.c.7. Essential information distributed to all nodes

	IV - 2.2.d. The issues of this architecture
	IV - 2.2.d.1. Infinite updating cycle

	V - Test Plan
	V - 1. Test Specification
	V - 1.1. Unit Tests
	V - 1.1.a. Sender Tests
	V - 1.1.a.1. Initial Information – Sender Test
	V - 1.1.a.2. Sharing fill-ins from local moralization – Sender Test
	V - 1.1.a.3. Sharing fill-ins from triangulation – Sender Test
	V - 1.1.a.4. Cycle verification – Sender Test
	V - 1.1.a.5. Finalization of cycle verification – Sender Test
	V - 1.1.a.6. Transferring beliefs to parent – Sender Test
	V - 1.1.a.7. Transferring beliefs to adjacent subnetwork – Sender Test
	V - 1.1.a.8. Stopping a Hypernode – Sender Test

	V - 1.1.b. Receiver Tests
	V - 1.1.b.1. Initial Information – Receiver Test
	V - 1.1.b.2. State Information – Receiver Test
	V - 1.1.b.3. Sharing fill-ins from local moralization – Receiver Test
	V - 1.1.b.4. Sharing fill-ins from triangulation – Receiver Test
	V - 1.1.b.5. Cycle verification – Receiver Test
	V - 1.1.b.6. Finalization of cycle verification – Receiver Test
	V - 1.1.b.7. Transferring beliefs to parent – Receiver Test
	V - 1.1.b.8. Transferring beliefs to adjacent subnetwork – Receiver Test

	V - 1.2. Integration Tests
	V - 1.2.a. Test using Ridiculous MSBN
	V - 1.2.b. Test using Little MSBN
	V - 1.2.c. Test using Medium Size MSBN
	V - 1.2.d. Test using 2-subnetwork MSBN
	V - 1.2.e. Test using 3-subnetwork MSBN
	V - 1.2.f. Test using Acyclic MSBN
	V - 1.2.g. Test using Cyclic MSBN
	V - 1.2.h. Test using 5partc MSBN

	V - 1.3. Adaptability Tests
	V - 1.3.a. Apparition of a new Hypernode
	V - 1.3.b. Falling of an existing Hypernode
	V - 1.3.c. Two existing MSBN join into an only MSBN

	V - 2. Test Results

	VI - Case study: FTTH
	VI - 1. FTTH Scenario
	VI - 2. Proposed reasoning system
	VI - 3. Proposed simulation model
	VI - 4. MSBN for the case study

	Conclusion
	Bibliography
	Glossary
	Appendix 1. Developer manual
	1. Subversion
	2. Maven

	Appendix 2. Installation manual
	1. Install Java JDK6
	Windows:
	Ubuntu:

	2. Install Maven
	Windows:
	Ubuntu:

	3. Install Eclipse and proper plugins
	4. Prepare the project and install dependencies:

